Leucodystrophies de l’adulte

F. Sedel

Le terme de leucodystrophies désigne, en pratique clinique, des affections génétiques diverses dont le point commun est une atteinte de la myéline du système nerveux central. Les progrès des techniques diagnostiques, que ce soit en imagerie, en biochimie ou en génétique ont permis de dénombrer un nombre croissant de leucodystrophies. Bien qu’elles débutent le plus souvent dans l’enfance, la plupart de ces maladies ont des formes cliniques plus insidieuses qui peuvent se révéler à l’âge adulte. Certaines sont accessibles à un traitement et leur diagnostic paraît donc indispensable. La démarche diagnostique doit être guidée par l’examen clinique (neurologique, ophthalmologique et général), l’électromyographie et l’imagerie par résonance magnétique (IRM), ainsi que par la recherche des causes potentiellement traitables.

© 2007 Elsevier Masson SAS. Tous droits réservés.

Mots clés : Leucodystrophie ; Leucoencéphalopathie ; Génétique ; Erreurs innées du métabolisme

Plan

- Introduction
 - Généralités
 - Orientation diagnostique devant une leucodystrophie de l’adulte
- Leucodystrophies avec neuropathie
 - Maladies lysosomiales
 - Xanthomatose cérébrotendineuse
 - Troubles de la reméthylation de l’homocystéine
 - Cytopathies mitochondriales
 - Porphyrie aiguë intermittente
 - Maladie de Pelizaeus-Merzbacher
 - Maladie à dépôts de polyglycosans
 - Maladie de Charcot-Marie-Tooth (CMT X)
- Leucodystrophies sans polyneuropathie
 - Leucodystrophies sus-tentorielles
 - Leucodystrophies touchant la fosse postérieure
- Leucodystrophies avec lésions vasculaires
 - « Cérébral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy »
 - Maladie de Fabry
- Conclusion

Introduction

Généralités

Le terme de leucodystrophie décrit stricto sensu une maladie d’origine génétique évoluant de façon progressive et responsable d’un défaut de développement ou d’une destruction progressive de la myéline encéphalique (revues dans [1-3]). L’approche diagnostique des leucodystrophies a été profondément modifiée au cours des dix dernières années avec la découverte de gènes responsables de nouvelles leucodystrophies et le développement de l’imagerie cérébrale qui a permis l’identification de nouvelles entités clinico-radiologiques. En raison de ces progrès et de la quasi-disparition en pratique clinique de la biopsie cérébrale à

Tableau 1.

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Test de dépistage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déficit en MTHFR</td>
<td>Homocystéine</td>
</tr>
<tr>
<td>CI C</td>
<td>Homocystéine</td>
</tr>
<tr>
<td>Xanthomatose cérébrotendineuse</td>
<td>Cholestanol</td>
</tr>
<tr>
<td>Aminoacidopathie</td>
<td>Chromatographie des acides amînés</td>
</tr>
<tr>
<td>Aciérie organique</td>
<td>Chromatographie des acides organiques</td>
</tr>
<tr>
<td>Porphyrine aiguë intermittente</td>
<td>Porphobilinogène, acide δ aminoleucovinique</td>
</tr>
</tbody>
</table>

Notez qu’au cours des mutations de la corréxine 32 et d’exceptionnelles adénomélocystostrophies ont peut également observer une leucoencéphalopathie spontanément réversible. MTHFR : méthyléthylétadibydrofylate réductase.

visée diagnostique, la classification des leucodystrophies, qui était fondée traditionnellement sur des critères neuropathologiques, repose désormais sur des critères cliniques, radiologiques et moléculaires. Progressivement, le terme de leucodystrophie est devenu synonyme, en pratique clinique, de « leucoencéphalopathie génétique » qui englobe un groupe de maladies héréditaires au cours desquelles on peut observer des anomalies diffuses de la substance blanche en imagerie par résonance magnétique (IRM) (Tableau 1). Dans une première tentative de classification pragmatique nous avions distingué :

- les leucodystrophies diagnostiquées grâce à une approche métabolique ;
- les leucodystrophies diagnostiquées par une approche génétique ;
- les leucodystrophies définies sur le plan clinique et radiologique mais pour lesquelles l’anomalie génétique ou métabolique causale n’était pas encore identifiée [4].

Dans cette revue, nous avons tenté de privilégier une classification reposant sur la clinique, l’électromyogramme (EMG) et l’IRM, plus proche du raisonnement du clinicien et ce, dans le souci d’élaborer une démarche diagnostique devant une leucodystrophie. Ainsi, nous avons distingué :
Tableau 2. Causes acquises de leucoencéphalopathies (d’après Filley et al. [12]).

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectieuses</td>
<td>VIH, CMV/VZV, panencéphalite sclérosante subaiguë, Lyme, rubéole, leucoencéphalopathie multifocale progressive</td>
</tr>
<tr>
<td>Tumorales</td>
<td>Panencéphalite, lymphome, gliomatose</td>
</tr>
<tr>
<td>Vasculaires</td>
<td>Binswanger, angioopathie amyloïde, syndrome des antiphospholipides</td>
</tr>
<tr>
<td>Inflammatoires</td>
<td>Sclérose en plaques, encéphalomyélite algue disséminée, encéphalomyélite algue hémorragique, Goujounet-Sjögren, maladie cœliaque, lypus érythémateux algue disséminé</td>
</tr>
<tr>
<td>Métaboliques acquises</td>
<td>Déficit en vitamine B6/folates, hypoxie, encéphalopathie hypertensive, éclampsie, œdème d’altitude</td>
</tr>
<tr>
<td>Toxiques</td>
<td>Anticancéreux, tacrolimus, ciclosporine, amphoteristine B, hexachloréphrine, tolérine, cocaine, héroïne, amphétamines, pilocycline, CO, arsenic</td>
</tr>
</tbody>
</table>

- les leucodystrophies avec polyneuropathie ;
- les leucodystrophies isolées que nous avons subdivisées en leucodystrophies sus-tentorielles et leucodystrophes touchant la fosse postérieure ;
- les leucodystrophies avec lésions vasculaires.

Cette classification est forcément imparfaite et l’existence de formes atypiques doit être prise en compte lors de la prise en charge de ces patients.

Orientation diagnostique devant une leucodystrophie de l’adulte

La démarche diagnostique devant une suspicion de leucodystrophie doit toujours débuter par la recherche de toutes les causes acquises, potentiellement réversibles, pouvant être responsables d’un aspect de leucoencéphalopathie diffus en IRM. Ces causes sont très nombreuses et peuvent être de nature inflammatoire, infectieuse, métabolique, autonome, paranéoplasique tumoral, ou vasculaire (Tableau 2) [8]. Une fois éliminées ces causes, on retient souvent par défaut le diagnostic de leucodystrophie. La plupart des signes neurologiques observés au cours des leucodystrophies de l’adulte sont peu spécifiques : troubles psychiatriques, atteinte cognitive de type sous-cortical, paraparésie spastique, ataxie cérébelleuse, crises d’épilepsie. Certains d’entre eux sont cependant évocateurs de quelques étologies et il faut s’attarder à la recherche d’une polyneuropathie, de myoclonies du doigt (maladie d’Alexander), d’un nystagmus multidirectionnel (maladie de Pelizaeus-Merzbacher), d’épisodes neurologiques aigus inexpliqués (Tableau 3). En revanche, les signes extraneurologiques, lorsqu’ils sont présents, ont une valeur d’orientation décisive (Tableau 3) : des kystes osseux orientent vers une maladie de Naxi-Hakola, une lichytose vers un syndrome de Sjögren-Larsson ou une maladie de Reisum, des axonèmes vers une xanthomatosé cérébrotendineuse, une insuffisance surrenale vers une adénoleucodystrophie, des troubles digestifs vers une xanthomatosé cérébrotendineuse, un syndrome MNGIE (mitochondrial neurogastrointestinal encephalomyopathy) ou une porphyrie aiguë intermitente. L’EMG, l’examen ophéantiel éventuellement complété par un électroégramme et des potentiels évoqués visuels ainsi qu’une spectro-IRM, quand elle est possible, permettent d’orienter ensuite le diagnostic. Toutefois, 50 % des leucoencéphalopathies génétiques restent sans diagnostic (Tableau 3) étiologique chez l’enfant et probablement plus chez l’adulte. On ne saurait proposer un bilan biologique systématique devant toute leucoencéphalopathie mais il faut avoir à l’esprit que certaines leucodystrophies sont accessibles à un traitement et le bilan étiologique doit permettre de ne pas passer à côté de ces causes curables. Enfin, du fait de la rareté et de la complexité de ces pathologies, un avis spécialisé pluridisciplinaire demeure essentiel devant toute leucodystrophie non identifiée.

Leucodystrophies avec neuropathie

Maladies lysosomales

Les lysosomes sont des organelles intracellulaires contenant des enzymes dont la fonction essentielle est de dégrader des molécules complexes afin d’en assurer le recyclage ou l’élimination. Les déficits en enzymes lysosomales sont donc essentiellement responsables de maladies « de surcharge ». Deux maladies lysosomales sont responsables, chez l’adulte, d’une atteinte primitive de la myéline centrale et, en général, périphérique : la leucodystrophie métachromatique et la maladie de Krabbe. Par ailleurs, un aspect de leucoencéphalopathie peut s’observer au cours de la mucolipidose de type IV ou la maladie de Fabry. Ces maladies seront décrites au cours des paragraphe suivant.

Leucodystrophie métachromatique

La leucodystrophie métachromatique, de transmission autosomique récessive, est due à un défaut en arylsulfatase A, enzyme lysosomale impliquée dans la dégradation des sulfitides qui sont des composants essentiels de la myéline. La surcharge en sulfitides est responsable d’une dégénérescence oligodendrocytaire et d’une démyléinisation progressive. Les formes débutant à l’âge adulte représentent 20 % des cas et l’âge de début peut atteindre la 7e décennie [6, 7]. Ces formes de l’adulte débutent le plus souvent par des troubles psychiatriques puis apparaissent progressivement un syndrome sous-cortico-frontal, une paraparésie spastique, une ataxie cérébelleuse, des crises convulsives, une atrophie optique, une polyneuropathie démyléinisante souvent asymptomatique [9, 10]. Des formes monosymptomatiques ont été décrites, se résumant parfois à une polyneuropathie motrice isolée [11] ou à un tableau psychiatrique pur sans polyneuropathie [12]. L’IRM met en évidence une leucoencéphalopathie bilatérale et symétrique touchant la substance blanche périventriculaire sus-tentorielle, à prédominance frontale et épargnant relativement les fibres en U (Fig. 1). Le spectroscopie par résonance magnétique (spectro-IRM) peut montrer une diminution du pic de N-acétyl-aspartate, signe de perte axonale progressive, ainsi qu’une augmentation du pic de myo-inositol, témoignant de la lésion réactionnelle [12].

Diagnostic et traitement

Le diagnostic repose sur le dosage de l’aryl sulfatase A dans les leucocytes. Ce test diagnostique n’est cependant pas suffisant car 1 à 2 % de la population est porteuse d’un pseudodeficit en arylysulfatase A sans traduction clinique. Le diagnostic doit donc être confirmé par la mise en évidence d’une accumulation de sulfitides dans les urines. Le diagnostic définitif sera confirmé par l’analyse moléculaire du gène de l’aryl sulfatase A. Le seul traitement qui peut être discuté à l’heure actuelle est la greffe de moelle osseuse qui, grâce à la sécrétion d’aryl sulfatase par les macrophages provenant du donneur, permet de restaurer en partie le déficit enzymatique [13]. Le bénéfice de la transplantation est à mettre en balance avec le risque de mortalité (environ 10 % pour un donneur human leucocyte antigen [HLA]-compatible, 25 % pour un donneur HLA-non compatible).

Maladie de Krabbe

La maladie de Krabbe, de transmission autosomique récessive, est due à un défaut en galactocérébroside responsable d’une
Tableau 3.
Leucodystrophies : orientation diagnostique en fonction des principaux signes associés (voir abréviations sous le tableau).

Signes cliniques

Polyneuropathie
Leucodystrophie métachromatique, maladie de Krabbe, adénoleucodystrophie, maladie de Refsum, troubles de la biogenèse des peroxysomes, déficit en MTHFR, ChLeC, maladie de Pelizaeus-Merzbacher, cytopathies mitochondriales (dénombrant syndrome MNGIE), porphyrie aiguë intermittente, maladie à dépôts de polyglucosans, Charcot-Marie-Tooth de type X.

Signes neurologiques aigus : encéphalopathie subaiguë, accidents vasculaires cérébraux (AVC ou pseudo-AVC)
Porphyrie, déficit en MTHFR, ChLeC, aciduries organiques, cytopathies mitochondriales (MELAS), CACH syndrome, Charcot-Marie-Tooth de type X, Cadasil, maladie de Fabry

Anomalies de la peau des parties molles
Maladie de Fabry (angiolésatomes), Sjögren-Larsson (ichtyose), adénoleucodystrophie (mélanodermie), xanthomatoscérébrotendineuse (xanthomes)

Myopathie
Déficit en mésorine, dystrophies myotonic, cytopathies mitochondriales.

Macrocéphalie
Leucodystrophie mëgalencéphalique avec kystes sous-corticaux, acidurie glutarique de type 1

Anomalies IRM
Hypersignal des faisceaux cortico-spinaux
Adénoleucodystrophie, maladie de Krabbe, xanthomatoscérébrotendineuse, cytopathies mitochondriales, Pelizaeus-Merzbacher, maladie à dépôts de polyglucosans, leucodystrophie avec lactates élevés, leucodystrophie avec sphéroïdes neuronaux

Atrophie précoce du tronc cérébral et/ou de la moelle épinière
Xanthomatoscérébrotendineuse, adénomyéloneuropathie, leucodystrophie avec lactates élevés, maladie d’Alexander, maladie à dépôts de polyglucosans, leucodystrophie avec sphéroïdes neuronaux

Perte de substance blanche (dégénérescence kystique)
CACH syndrome, leucodystrophie mëgalencéphalique avec kystes sous-corticaux

Anomalies de signal des noyaux lenticulaires
Xanthomatoscérébrotendineuse, cytopathies mitochondriales, maladie de Nasu Hakola, Cadasil, maladie d’Alexander

Atteinte précoce des fibres en U
Aciduries organiques, cytopathies mitochondriales, porphyrie aiguë intermittente, maladie de Pelizaeus-Merzbacher, CACH syndrome

Anomalies ophtalmologiques

dépôts corièns
Mucolipidose de type IV, maladie de Fabry

Cataracte
Xanthomatoscérébrotendineuse, troubles de la biogenèse des peroxysomes, cytopathies mitochondriales, dystrophies myotonic

Dégénérescence rétinienne
Xanthomatoscérébrotendineuse, ChLeC, troubles de la biogenèse des peroxysomes, maladie de Refsum, cytopathies mitochondriales, syndrome de Sjögren-Larsson, mucolipidose de type IV

Atrophie optique
Leucodystrophie métachromatique, maladie de Krabbe, adénoleucodystrophie, cytopathies mitochondriales, aciduries organiques, maladie de Pelizaeus-Merzbacher, CACH syndrome, maladie à dépôts de polyglucosans, mucolipidose de type IV

Figure 1. Leucodystrophie métachromatique. Imagerie par résonance magnétique (IRM) encéphalique selon un plan axial en séquence T2. Plage d’hypersignal diffus touchant la substance blanche périventriculaire s’étendant dans les régions sous-corticales épargnant les fibres en U. Cet homme de 36 ans avait commencé à présenter des troubles du comportement vers l’âge de 15 ans. Un diagnostic de schizophrénie avait alors été porté. Progressivement sont également apparus un syndrome défigurant de type sous-cortico-frontal et une polyneuropathie démyélinisante infraclinique (non publié).

Une vingtaine de cas débutant à l’âge adulte ont été rapportés dont un ayant débuté à 60 ans [14-20]. Dans ces cas adultes, le phénomène clinique associait une paraparésie spastique (65 % des cas), des pieds creux (50 %), une neuropathie motrice démyélinisante souvent asymptomatique (50 %), un syndrome cordonal postérieur (45 %), une atteinte bulbaire (35 %) avec atrophie de la langue ou de l’hémilangue et dysarthrie. Les autres signes étaient plus rares : syndrome cérebelleux modéré, troubles viscoconstricteurs, polyneuropathie sensitive, démence, atrophie optique. En IRM, on observe une atrophie bilatérale et symétrique des faisceaux cortico-spinaux, parfois associée à une atrophie du splénium du corps calleux, des radiations optiques et de la substance blanche cérébelleuse [15, 21]. Exceptionnellement, l’IRM peut être normale [16].

Diagnostic
L’analyse du liquide céphalo-rachidien peut mettre en évidence, inconstamment, une hyperprotéino-rachie modérée mais le diagnostic repose sur le dosage de l’enzyme galactocérébrosidase dans les leucocytes ou dans les fibroblastes. Le seul traitement pouvant être discuté est la greffe de moelle osseuse qui peut être efficace dans les formes à début tardif où il existe une activité enzymatique résiduelle [22].

Maladies peroxysomales
Les peroxysomes sont des organelles qui jouent un rôle essentiel dans le métabolisme des lipides. Ils interviennent dans la dégradation ou la synthèse de certains constituants majeurs de la myéline (acides gras à très longues chaînes, plasmalogènes).
Adénoleucodystrophie

Cette maladie de transmission récessive liée à l’X est due à un défaut de dégradation peroxysomale des acides gras à très longues chaînes (AGTLC). Le gène déficient code pour l’adrenoleucodystrophy protein (ALDP) qui joue un rôle dans le transport peroxysomal des AGTLC (revue dans [23, 24]). Plusieurs formes clinico-radiologiques peuvent être distinguées chez l’adulte.

Adénomyéloneuropathie

Chez l’homme adulte, la forme clinique la plus fréquente est l’adénomyéloneuropathie (AMN) qui représente 40 % environ des formes cliniques d’adénoleucodystrophie [24]. Il s’agit d’une axonopathie distale non inflammatoire touchant les fibres longues, en particulier de la moelle épinière. Elle associe une paraparésie spastique, un syndrome cordonal postérieur, des troubles urinaires, une polyneuropathie axonale ou mixte et des troubles cognitifs discrets [24, 25]. L’atteinte cérébelleuse est possible mais rare [26]. Dans près de la moitié des cas d’AMN, des anomalies sont observées en IRM (on parle parfois d’AMN cérébrale) : hypersignal symétrique des faisceaux corticospinaux (Fig. 2), du spémiun du corps calleux, de la substance blanche pariétolo-occipitale. Plus rarement, les lésions touchent le genou du corps calleux et la substance blanche frontale [27, 28]. La présence de lésions visibles en IRM est associée à l’existence de troubles cognitifs et, constituée, surtout s’il existe une prise de gadolinium, un facteur de pronostic défavorable d’évolution vers une adénoleucodystrophie cérébrale (ALDC) [29]. La spectro-IRM peut montrer une baisse du N-acétyl-aspartate et une augmentation de la choline dans la substance blanche en apparence normale [28, 30].

Adénoleucodystrophie cérébrale de l’adulte

Après 10 ans, l’AMN évolue dans 20 % des cas vers une forme clinique rapidement progressive appelée adénoleucodystrophie cérébrale (ALDC) [31]. Cette forme peut aussi être inaugurale dans 3 à 5 % des cas [24]. À l’inverse de l’AMN, l’ALDC est une affection démyélinisante caractérisée par une importante réaction inflammatoire. Le tableau clinique associe des troubles psychiatriques qui peuvent précéder de plusieurs années l’apparition de troubles cognitifs, d’une para- ou hémiparésie, de crises d’épilepsie conduisant habituellement au décès en quelques années [32, 33]. L’IRM met en évidence des lésions extensives de la myéline débutant le plus souvent au niveau du spémiun du corps calleux et s’étendant progressivement à la substance blanche pariétolo-occipitale. Rarement, les lésions prédominent dans les régions frontales. On peut observer une prise de contraste en périphérie des plages de démyélisation, témoignant du processus inflammatoire avec rupture de la barrière hématoencéphalique. Un aspect de lésion unique, volumineuse, « pseudotumorale » a été parfois décrit au cours des ALDC [34]. Exceptionnellement, les lésions IRM de l’ALDC ainsi que les signes cliniques peuvent régresser spontanément [35].

Adénoleucodystrophie chez les femmes hétérozygotes

Environ 50 % des femmes hétérozygotes présentent après 40 ans une exagération des réflexes ostéotendineux et des troubles sensitifs distaux sans retentissement fonctionnel important. Toutefois, 15 % des hétérozygotes développent en plus une paraparésie spastique et une ataxie proprécipitive de révélation tardive en général sans polyneuropathie [24, 36]. Dans 1 à 3 % des cas, les femmes peuvent également présenter des troubles du comportement, psychiatriques ou visuels, et des lésions IRM ressemblant à celles de l’adénoleucodystrophie cérébrale [37].

Insuffisance surrenale

Elle peut mettre en jeu le pronostic vital et doit être systématiquement détectée. Elle affecte 75 % des hommes et moins de 1 % des femmes hétérozygotes [38] ; elle peut être uniquement diagnostiquée d’où l’intérêt du test à l’adrenocorticotrophic hormone (ACTH). Enfin, elle peut être isolée (sans signes neurologiques associés) dans 10 % des cas.

Diagnostic et traitement

Le diagnostic d’adénoleucodystrophie repose sur le dosage des AGTLC plasmatiques. Ce dosage doit être répété en cas de forte suspicion clinique chez les femmes hétérozygotes car il existe 20 % de faux négatifs. Le diagnostic sera confirmé par l’analyse moléculaire du gène. Un régime remplacant les graisses naturelles par des acides gras mono-insaturés (huile de Lorenzo composée de glutaryl trioléate et glutaryl trierucate dans un rapport 4 : 1) permet de normaliser la concentration plasmatique des AGTLC en inhibant l’elongation microsomale des AGTLC. Les limites de ce régime, outre qu’il présente des effets secondaires (thrombopénies, gingivite, élévation des enzymes hépatiques, troubles digestifs), sont liées au fait que le glutaryl trierucate, qui est le composé le plus actif, ne passe pas la barrière hématoencéphalique. Les résultats des études cliniques sont contradictoires mais, dans l’ensemble, s’il ne semble pas y avoir d’effet important sur les signes neurologiques déjà existants [26], ce régime permettrait d’éviter au stade présymptomatique l’apparition de lésions IRM [39]. Il faut cependant noter que le caractère très contraignant du régime n’a pas permis de réaliser des études randomisées contre placebo. La greffe de moelle a été proposée avec des résultats parfois spectaculaires [40]. L’attitude actuelle est de la retenir aux formes cérébrales de l’enfant à un stade peu symptomatique.

Maladie de Refsum

La maladie de Refsum de l’adulte est due à un déficit en phytanoyl-CoA-hydroxylase, enzyme peroxysomale impliquée dans l’étape initiale d’oxydation de l’acide phytanique [41, 42]. Cette maladie associe, dans sa forme complète, une polynéuropathie axonale ou démyélinisante, une anoxmie, une rétinite pigmentaire, une ataxie cérébelleuse, une hypacoacousie, une ictyose, une hyperprotéinorachie et des anomalies squelettiques (raccourcissement des 3e et 4e métatarsiens et de la dernière phalange du pouce). Une leucœncéphalopathie péréiventriculaire, souvent modérée et asymptomatique, peut s’observer en IRM (Fig. 3). Le diagnostic repose sur un taux élevé d’acide phytanique (de 10 à 100 fois la normale) puis sur le dosage de l’activité enzymatique. Un régime pauvre en acide phytanique, essentiellement associé à des low density lipoproteins (LDL)-aphérèses peut avoir une efficacité sur la neuropathie.

Troubles de la biogenèse des peroxysomes

On peut observer des leucœncéphalopathies diffuses en cas d’anomalies congénitales de la structure ou de la fonction globale des peroxysomes [43, 44]. Cette entité regroupe au moins 12 maladies de transmission autosomique récessive, génétiquement distinctes, liées à des anomalies de protéines indispensables pour le maintien de la membrane peroxysomale ou l’importation des enzymes à l’intérieur du peroxysome [45]. Les

Xanthomatose cérébrotendineuse

C’est une maladie de transmission autosomique récessive, due à un déficit en stérol-27-hydroxylase mitochondriale, impliqué dans la voie de synthèse des acides biliaires à partir du cholestérol [50, 51]. Ce bloc enzymatique conduit à l’accumulation d’un métabolite peu soluble, le cholestérol et à l’accumulation de cholestérol dans les tissus. Cette accumulation est en partie liée à la diminution de formation de l’acide chénotéroxylasique qui inhibe normalement la cholestérol 7-a-hydroxylase, enzyme impliquée dans la synthèse du cholestérol.

Les symptômes débutent en général dans l’enfance ou l’adolescence par des troubles cognitifs (difficultés scolaires, stagnation des acquisitions), une diarrhée chronique ou des crises d’épilepsie. Une cataracte est présente dès l’enfance ou apparaît ensuite dans 90 % des cas. Entre les 2 e et 4 e décennies, le tableau clinique se complète progressivement par un syndrome pyramidal, des troubles psychiatriques et/ou cognitifs, une ataxie cérébelleuse, une neuropathie axonale ou démyélini-sante, souvent infracranienne, parfois un syndrome parkinsonnien [52]. Les xanthomes sont contemporains de l’apparition des troubles neurologiques et apparaissent essentiellement au niveau des tendons achilléens. Une forme spinale révélée à l’âge adulte par un tableau de sclérose combinée de la moelle et une cataracte a aussi été décrite [49].

En IRM, on observe des hypersignaux en plages touchant préférentiellement les noyaux dentés du cervelet, les pédon-cules cérébelleux, la substance blanche périventriculaire, parfois les pallidums et les faisceaux pyramidaux (Fig. 4) [50]. Des hypersignaux correspondant à des dépôts lipidiques peuvent également être observés en particulier au niveau des noyaux dentés du cervelet. La spectro-IRM montre en général une augmentation isolée du pic de choline.

Diagnostic et traitement

Le diagnostic repose sur le dosage anormalement élevé du cholestérol plasmatique. Le traitement associe l’acide chénotéroxylasique qui diminue la formation de cholestérol en inhibant la cholestérol 7-a-hydroxylase, à un inhibiteur de l’HMG CoA réductase qui diminue la synthèse du cholestérol. Ce traitement permet de prévenir, voire d’améliorer les signes neurologiques [53].

Troubles de la reméthylation de l’homocystéine

L’homocystéine est un acide aminé soufré produit à partir de la méthionine (Fig. 5) et qui peut être transformé en cystéine par l’enzyme cystathionine β synthase (voie de la transulfuration) ou bien être reméthylée en méthionine par l’enzyme méthionine synthase (voie de la reméthylation). Cette réaction de reméthylation utilise deux cofacteurs : le S-méthyl tétrahydrofolate et l’hydroxocobalamine (vitamine B12). Deux groupes de maladies métaboliques peuvent être responsables d’un trouble de la reméthylation de l’homocystéine [54-56] :

- les déficits des enzymes impliquées dans le métabolisme cellulaire de la cobalamine et dont il existe cinq types (appelés CblC, CblD, CblE, CblF et CblG) ;
- le déficit en méthylène tétrahydrofolate réductase (MTHFR).

Au cours de ces maladies, l’hyperhomocystéinémie est en règle supérieure à 100 µM (normale < 15 µM).

Quelques cas adultes de déficit en MTHFR et de troubles du métabolisme de la cobalamine (essentiellement CblC et CblG) ont été décrits. On a pu observer chez ces patients des troubles psychiatriques de nature psychotique, une atteinte médullaire du type sclérose combinée de la moelle ou de type parapalgie flasque, une polyneuropathie périphérique et des lésions diffuses de la substance blanche en IRM responsables d’un aspect de leucodystrophie potentiellement réversible sous traitement [57, 58]. On peut observer, de façon assez caractéristique, surtout au
cours du déficit en MTHFR, des épisodes d’encéphalomyélopathie d’évolution subaiguë, associant céphalées, syndrome confusionnel, troubles de l’équilibre, syndrome pyramidal (paraplégie) et coma spontanément réversible.

Diagnostic et traitement

Le diagnostic des troubles du métabolisme de la cobalamine repose sur l’hyperhomocystéinémie (en général supérieure à 100 µM), l’hypométhioninémie, et l’existence (dans le cas du déficit CblC en particulier) d’une augmentation de l’acide méthylmalonique urinaire (la cobalamine intervient également dans la transformation du méthylmalonil CoA en succinyl CoA). Le traitement des troubles du métabolisme de la cobalamine repose essentiellement sur l’administration d’hydroxocobalamine intramusculaire. Le diagnostic de déficit en MTHFR doit être suspecté devant une hyperhomocystéinémie (en règle supérieure à 100 µM), avec méthioninémie et folates érythrocytaires abaissés. Il est confirmé directement par la recherche de mutations du gène de la MTHFR ou, éventuellement, par la mesure de l’activité de la MTHFR sur leukocytes ou fibroblastes. Le traitement, qui vise à faire baisser l’homocystéinémie tout en maintenant une méthioninémie élevée, associe un apport de folates, de vitamine B₁₂ et de bétaïne.

Cytopathies mitochondriales

Outre les lésions des noyaux gris centraux caractéristiques, des anomalies diffuses de la substance blanche, parfois isolées, ont été décrites en IRM au cours de plusieurs cytopathies mitochondriales dont le syndrome de Leber [55], le syndrome de Kearns-Sayre [56] ou le MELAS (myopathie mitochondriale-encéphalopathie-acidose lactique) [57, 58]. Le syndrome MNGIE de transmission autosomique récessive, liée à une mutation dans le gène de la thymidine phosphorylase, est responsable d’une leuкоencéphalopathie diffuse habituellement asymptomatique [59]. Les autres signes qui dominent le tableau clinique sont les troubles digestifs à type d’épisodes pseudo-occlusifs alternant avec des épisodes de diarrhée. Ces troubles digestifs sont responsables d’une cachexie progressive qui met en jeu le pronostic vital. En outre, les patients présentent souvent une polyneuropathie sensitivomotrice démyélinisante ou mixte [60], des troubles oculomoteurs (prière, opsinaïllopalmie) et une rétinite pigmentaire. Le diagnostic repose sur le dosage de la thymidine plasmatique anormalement élevé et sur la mesure de l’activité de la thymidine phosphorylase.

Porphyrie aiguë intermittente

Elle est due le plus souvent à un déficit en porphobilinogène déaminase, enzyme intervenant dans la voie de synthèse de l’hème à partir de l’acide α aminolévulinique [61]. Cette affection est de transmission autosomique dominante mais de pénétrance incomplète (10 % environ). Elle évolue par crises (attaques) pouvant être déclenchées par le stress, l’alcool, certains médicaments, qui débutent en général entre 20 et 30 ans et qui sont plus fréquentes chez les femmes. Notons que d’autres porphyries dont le déficit en α aminolévulinique synthétase, la porphyrie variegata, la coproporphyrie peuvent exceptionnellement se présenter par des attaques neurologiques, parfois associées à des troubles cutanés (fragilité, érosions, crevasses aggravées par l’exposition solaire). Au cours des attaques, les patients peuvent présenter pendant plusieurs jours ou semaines des douleurs abdominales diffuses, des urines qui foncent à la lumière (couleur porto), une neuropathie axonale motrice aiguë ou subaiguë, des troubles neurovégétatifs (constipation, tachycardie, hypertonie, hypotonie), des troubles psychiatriques, un syndrome confusionnel ou des crises d’épilepsie. Il a également été décrit au cours de ces attaques des anomalies en IRM touchant éventuellement la substance blanche : dans plusieurs cas, il s’agissait d’une leuкоencéphalopathie sus-tentoriel postérieure (pariéto-temporo-occipitale) transitoire [62], Parfois, il s’agissait d’anomalies en hypersignal en « mottes » de la substance blanche juxtacorticale (fibres en U), pouvant être rehausées après injection de produit de contraste et régressant spontanément après traitement [63].

Diagnostic et traitement

Le test de dépistage repose sur le dosage du porphobilinogène urinaire, éventuellement complété par celui de l’acide α aminolévulinique, des porphyrines, de la coproporphyrie fécale et des dosages enzymatiques spécifiques. Le traitement de l’attaque associe l’arrêt de tous les traitements inducateurs de la synthèse de l’hème, les analgésiques, la perfusion de sucre glucosé et l’administration d’hème par voie parentérale.

Maladie de Pelizaeus-Merzbacher

De transmission récessive liée à l’X, elle est due à une anomalie (délétion, duplication, ou mutation ponctuelle) dans
Figure 6. Maladie de Pelizaeus-Merzbacher (paraparésie spastique de type SPG2). Imagerie par résonance magnétique (IRM) encéphalique selon un plan axial en séquence en écho de spin pondérée en T2. Hyperintensité de la substance blanche périventriculaire à prédominance postérieure associée à une perte du contraste normal entre la substance grise et la substance blanche, réalisant un aspect inhomogène de cette dernière. Cet homme de 38 ans, caissier dans une grande surface, présentait des troubles de la marche depuis l’enfance. L’évolution avait été très lentement progressive sur le mode d’une paraparésie spastique progressive associée depuis l’âge de 20 ans à des troubles sphinctériens, à un nyctalopsie et à une parésie de la verticalité du regard (cas non publié).

le gène de la protéine protéolipidique (PLP), constituant majeur de la myéline [64, 65]. Il existe une variabilité phénotypique importante qui va des formes à début prénatal, rapidement létale, aux paraparésies spastiques pures (paraparésie de type SPG2).

Des formes débutant à l’âge adulte ont été exceptionnellement rapportées [66-68] qui associent une paraparésie spastique à un syndrome cérébelleux, un nyctalopsie pluridirectionnel, une atrophie optique, une polyneuropathie à prédominance axonale et des troubles cognitifs. L’altération multimodale des potentiels évoqués auditifs, moteurs et sensitifs est évocatrice du diagnostic. Bien que le cerveau soit porté par le chromosome X, les femmes hétérozygotes peuvent exceptionnellement développer la maladie à l’âge adulte [69]. En IRM, les altérations sont diffuses et touchent aussi bien les fibres en U que la substance blanche périventriculaire. L’alternance de zones d’hypomyélinisation et de zones normalement myélinisées donne un aspect inhomogène « saïde » de la substance blanche en IRM sur les séquences pondérées en T2 (Fig. 6). En séquence T1, on observe une perte de l’hyper Signal physiologique de la substance blanche avec perte du contraste entre substance blanche et substance grise. Chez les femmes hétérozygotes, on observe souvent une atrophie corticale isolée sans anomalies de la substance blanche en IRM. Le diagnostic repose directement sur l’analyse moléculaire du gène de la protéine protéolipidique.

Maladie à dépôts de polyglycosans

Elle est caractérisée sur le plan neuropathologique par l’accumulation de corps périodic acid Schiff (PAS) positifs contenant du glycogène dans le système nerveux central et périphérique. Le mode de transmission est habituellement autosomique récessif. Dans certains cas, l’anomalie génétique concerne l’enzyme branchante du glycogène (glycécoyénase de type IV) [70]. Le phénotype clinique est variable, associant une atteinte des motoneurones corticaux et médullaires, des troubles sphinctériens et un syndrome démentiel. Il existe fréquemment une polyneuropathie axonale ou mixte et quelques cas de syndromes parkinsoniens ont été rapportés [71]. L’IRM peut mettre en évidence une atteinte diffuse de la substance blanche supratentorielle parfois étendue à la substance blanche du mésencéphale et du cervelet [72], ainsi qu’une atrophie corticosous-corticale pouvant intéresser le cervelet et la moelle épinière. Le diagnostic repose sur la mise en évidence des dépôts de collagène PAS-positifs (polyglycosans) sur une biopsie nerveuse ou du creux axillaire. Il n’y a pas de traitement connu de cette affection.

Maladie de Charcot-Marie- Tooth (CMT X)

Des atteintes de la substance blanche ont été décrites au cours de la maladie de Charcot-Marie-Tooth liée à des mutations de la connexine 32. Cette affection de transmission liée à l’X est habituellement responsable d’une polyneuropathie sensitivomotrice démyélinisante ou mixte d’évolution chronique. Certains patients peuvent présenter en outre des signes neurologiques centraux (ataxie, dystrophie, mono- ou paraparésies, paralysies des paires crâniennes) durant plusieurs heures à plusieurs jours, parfois déclenchés par des séjours en altitude. En IRM, on observe un aspect de leuconérophathie diffuse qui accompagne les troubles neurologiques centraux et régresse habituellement spontanément [73, 74].

Leucodystrophies sans polyneuropathie

Leucodystrophies sus-tentorielles

Aminoacidopathies et aciduries organiques

Chez les patients adultes atteints de phénylcétonurie et dont le régime pauvre en phénylalanine a été interrompu, il a été décrit, associés à des phénylalaninémies très élevées, des troubles neurologiques (syndrome pyramidal, syndrome parkinsonien, ataxie) ou psychiatriques. Une leuconérophathie diffuse, souvent asymptomatique et réversible avec la normalisation des taux de phénylalanine, peut aussi être observée (Fig. 7) [75]. Certaines aciduries organiques comme l’acidurie glutarique de type 1 [76], l’acidurie 2-hydroxy-glutarique [77], l’acidurie 3-méthylglutarique [78] ou le déficit en 3-HMG CoA lyase [79] peuvent se révéler à l’âge adulte par des troubles neurologiques (crises d’épilepsie, céphalées, démence, atrophie optique, syndrome pyramidal), associés, dans le cas de l’acidurie glutarique de type 1, à une macrocéphalie. L’IRM montre des

Figure 7. Phénylcétonurie. Imagerie par résonance magnétique (IRM) encéphalique selon un plan axial en séquence fluid attenuated inversion recovery (FLAIR). Plages d’hyposignal bilatérales et symétriques à prédominance péréventriculaire s’étendant principalement dans les régions sous-corticale. Cette femme de 25 ans présentait une phénylcétonurie dépistée à la naissance par un test de Guthrie. Elle avait suivi un régime jusqu’à l’âge de 5 ans puis l’avait interrompu. Son développement intellectuel et moteur avait été normal. À l’âge de 25 ans, une IRM fut réalisée en raison de sensations vertigineuses, associées à des douleurs diffuses mal systématisées. La phénylalaninémie était à 1 399 µmol/l (N < 150). Les lésions disparurent en 6 mois après la reprise du régime (IRM de contrôle non montrée, cas non publié).
anomalies diffuses de la substance blanche dont la particularité est de toucher précocement les fibres en U (fibres d’association intrahémisphériques). Dans certains cas, un traitement à base de carnitine et de régime pauvre en protéines s’est révélé efficace [77].

« Childhood ataxia with CNS hypomyelination syndrome »

C’est une affection de transmission autosomique récessive et liée à des mutations touchant un des cinq gènes codant pour les sous-unités du facteur d’initiation de la traduction « EIF2b ». Une dizaine de cas débutant à l’âge adulte ont été rapportés [80]. Par ailleurs, une forme de transmission autosomique dominante, dont le gène n’est pas encore connu, a été récemment décrite [83].

Chez l’enfant, les signes cliniques associent une ataxie cérébelleuse, un syndrome pyramidal, des troubles cognitifs, et parfois une atrophie optique ou une épilepsie. L’élément caractéristique est l’existence de comas déclenchés par des infections ou des traumatismes [82]. Chez l’adulte, le tableau clinique est peu spécifique et associe une démence sous-corticale progressive, une ataxie et un syndrome pyramidal. Les femmes atteintes peuvent présenter une insuffisance ovarienne évoquée (le CACH syndrome avait été initialement appelé « ovarioleucodystrophi syndrome »). L’aspect en IRM du CACH syndrome est caractéristique : on observe une raréfaction progressive de la substance blanche remplacée au fur et à mesure que la maladie évolue par du ICR bien visible sur les séquences FLAIR (Fig. 8). La spectro-IRM montre une diminution progressive de tous les métabolites, correspondant à la perte progressive de la myéline, parfois associée à un pic de lactates. Le diagnostic moléculaire repose sur l’analyse des gènes codant pour les sous-unités de EIF2b. La mutation R113H de la sous-unité EIF2BS paraît plus fréquente dans les formes de l’adulte [82]. Il n’existe pas de traitement spécifique de cette affection mais les corticoïdes peuvent avoir une efficacité lors des épisodes de décompensation aiguë [83].

Leucodystrophie mégalencéphalique avec kystes sous-corticaux

De transmission autosomique récessive, elle est liée dans la plupart des cas à une anomalie du gène MLCI codant pour une protéine membranaire de fonction inconnue. Le tableau clinique est caractérisé par un syndrome pyramidal et une ataxie cérébelleuse progressifs associés à des crises d’épilepsie précoces et à une préservation relative des fonctions cognitives. Chez l’enfant, la macrocéphalie est caractéristique. Dans la plupart des cas, l’évolution est relativement lente avec perte de la marche au cours de la première décennie, mais la survie à l’âge adulte est possible [83]. Des formes sans macrocéphalie et pouvant se résumer à des crises d’épilepsie isolées à l’âge adulte ont également été rapportées [84]. Là encore, l’aspect en IRM est très évocateur du diagnostic : on observe des zones kystiques sous-corticales prédominant dans les lobes temporaux et pariétaux, associées à des anomalies diffuses de la substance blanche.

Syndrome de Sjögren-Larsson

De transmission autosome récessive, il est dû à un déficit en fatty aldehyde dehydrogenase (FALDH), enzyme impliquée dans la transformation des aldéhydes gras et alcools gras en acides gras polyinsaturés. Le bloc enzymatique est responsable d’une accumulation d’al déhydes gras cataxiques et d’une modification de la composition lipidique des membranes cellulaires. Environ 200 cas ont été recensés dans le monde. Ce syndrome associe une ichthyose sévère qui apparaît au cours de la première année de vie, une paraparésie spastique, un retard mental, une dystrophie cutanée avec dépôts rétinian. Les troubles neurologiques peuvent apparaître à l’âge adulte [85]. L’IRM met en évidence une atteinte diffuse de la substance blanche supratentorielle prédominant dans les régions périventriculaires [86]. Le diagnostic repose sur le dosage de la FALDH sur culture de fibroblastes. Le zéyleton, inhibiteur de la synthèse des acides gras, a une efficacité sur le prurit et l’ichthyose, mais, en revanche, son effet sur les troubles neurologiques n’est pas démontré.

Mucolipidose de type IV

C’est une maladie de surcharge de transmission autosome récessive, caractérisée par l’accumulation d’inclusions lysosomiales faites de matériel lipidique [87]. La maladie est due à une mutation du gène de la mucolipine, canal cationique sensible au pH dont la fonction précise est pour le moment non élucidée. Environ 100 patients atteints de cette affection ont été décrits. Dans 80 % des cas, il s’agissait de juifs ashkénazes. Les signes cliniques débutent dans l’enfance et associent un retard psychomoteur peu évolutif, des troubles visuels progressifs complexes (dyshorie corneenne, dégénérescence rétinienne, atrophie optique) et une paraparésie spastique. Certaines formes modérées peuvent passer inaperçues jusque-là à l’adolescence, voire l’âge adulte [86]. L’IRM met en évidence une atrophie diffuse du corps calleux associée à une atteinte de la substance blanche périventriculaire et d’autres lésions cérébrales [86]. Le diagnostic est orienté par l’augmentation de la gastrinémie secondaire à une aclorhydrie gastrique, l’existence d’une carence maritale fréquente, la mise en évidence d’inclusions lysosomiales ubiquitaires caractéristiques sur la biopsie de peau ou de muscle et l’existence de fibroblastes autofluorescents en culture. Le diagnostic définitif repose sur l’analyse du gène de la mucoline. Il n’y a pas de traitement connu de cette affection.

Maladie de Nasu Hakola (ou « ostéodystoplasie polykystique lipomembranée avec leuconéphrophathie sclérosante »)

C’est une affection de transmission autosome récessive liée à des anomalies des gènes DAP12 et TREM2, codant pour les sous-unités d’un récepteur membranaire exprimé dans certaines cellules du système immunitaire et dans les cellules microgliales [90]. Environ 160 cas ont été recensés dans le monde, avec une prépondérance au Japon et en Finlande [91]. Les troubles neurologiques apparaissent en général à l’âge adulte, associant une atteinte précoces des fonctions instrumentales et des crises d’épilepsie. L’existence de kystes osseux, responsables de fractures et de douleurs qui précèdent l’apparition des symptômes neurologiques est très caractéristique. L’aspect IRM est celui
d’une leucocéphalopathie périventriculaire sus-tentorielle avec atrophie cortico-sous-corticale, associée à des calcifications bilatérales des putamens [93].

Leucocéphalopathies au cours des myopathies héréditaires

certaines affections musculaires génétiques peuvent s’accompagner d’un aspect de leucocéphalopathie en IRM. L’atteinte centrale est en général peu symptomatique et le syndrome myogène domine le tableau clinique. Le déficît en mémoire, de transmission automotrice récessive, est lié à une mutation du gène de la sous-unité α-2 de la laminine. Certaines mutations qui entraînent une absence complète de la protéine sont responsables d’une dystrophie musculaire sévère de début périnatal. À l’inverse, les mutations qui entrainent un déficit partiel entraînent des symptômes musculaires qui peuvent débuter à l’âge adulte. L’histologie musculaire peut être celle d’une dystrophie et d’une atrophie corticale avec dégénérescence axonale. La particularité du déficit en mémoire est l’existence d’une leucocéphalopathie le plus souvent asymptomatique [92]. D’autres myopathies de transmission autosomique dominante comme la dystrophie myotonique de type 1 (myotonie de Steinert) ou la dystrophie myotonique de type 2 (myopathy myotonique proximale [FOM]) peuvent se manifester par des anomalies diffusées de la substance blanche en IRM [93, 94]. Au cours de la dystrophie myotonique de type 1, les anomalies de signal touchent, électivement, la substance blanche des régions temporales. De plus, il existe fréquemment des hypersignaux multiples de la substance blanche encéphalique dont le nombre et la taille sont corrélés à la durée d’évolution de la maladie [93]. Au cours de la dystrophie myotonique de type 2, les anomalies de signal peuvent être beaucoup plus diffusées [94].

Leucodystrophie orthochromatique pigmentaire

e elle est caractérisée par l’existence de pigments intramacrophagiques brun jaunâtre après coloration par l’hématoxyline-éosine, PAS positifs et colorés en vert foncé par la méthode de Nissl. La présentation clinique est dominée par les troubles psychiatriques et le cataracte congénital [95]. En IRM, elle présente une démyélinisation diffuse, respectant relativement les fibres en U et la substance blanche cérébelleuse.

Leucodystrophies touchant la fosse postérieure

Maladie d’Alexander

de transmission autosomique dominante, c’est une affection délinéée en neuropathologie par l’existence de fibres de Rosenthal. Elle est responsable chez l’enfant d’une leucodystrophie périventriculaire prédominant dans les régions frontales. Récemment, on a pu noter que des mutations dans le gène de la GFAP, neurofilament intermédiaire spécifiquement exprimé dans les astrocytes, étaient responsables des formes autosomiques dominantes et de certaines formes sporadiques de la maladie [95]. Une quinzaine de cas, très différents de ceux de l’enfant, ont été rapportés chez l’adulte [97, 98]. Le tableau clinique chez l’adulte est marqué par des signes d’atteinte de la moelle épinière et de la fosse postérieure : paraparésie spastique progressive, signes bulbaires (dysarthrie, vomissements répétés, myoclonies du voile, dysautonomie) et une ataxie cérébelleuse. Les fonctions cognitives sont en général préservées. En IRM, on observe une atrophie progressive du bulbe, de la moelle épinière et du cervelet alors que la leucocéphalopathie périventriculaire est modérée, voire absente. Il peut s’associer des hypersignaux du tronc cérébral et des ganglions de la base, dont certains peuvent être rehaussés après injection de gadolinium [98], ainsi que des hypersignaux nodulaires en chapelets (ou guirlandes) observés le long de la paroi interne des ventricules latéraux [99].

Fragile X tremor ataxia syndrome

Il a été décrit récemment, chez des patients porteurs d’une prémutation de l’X fragile (55 à 200 triplets CGG dans le gène FRM1), un syndrome associant ataxie cérébelleuse et tremblement d’intention. D’autres signes peuvent être associés dont un syndrome parkinsonien, une dystonie, un syndrome démentiel et, plus rarement, une polyneuropathie. Les signes cliniques débutent en général après 50 ans chez l’homme. La transmission est liée à l’X mais les femmes hétérozygotes peuvent présenter une ménopause précoce ainsi que des signes neurologiques plus modérés que chez l’homme [100]. L’IRM montre une atrophie corticale diffuse, ainsi qu’une leucocéphalopathie touchant les régions périventriculaires et, surtout, de façon très caractéristique des structures cérébelleuses moyens [101]. Le diagnostic repose directement sur la recherche d’expansion de triplets CGG dans le gène FRM1.

Leucocéphalopathie liée au chromosome 5q

Leucoencephalopathy with brainstem and spinal cord involvement and high lactate

Leucocéphalopathie héréditaire diffuse avec sphéroïdes neuroaxonaux

c’est une affection de transmission autosomique dominante dont l’anomalie génétique causale n’est pas encore identifiée [106]. Elle est à l’origine de troubles psychiatriques, d’un déclin cognitif et d’un syndrome tétapyramidal. L’aspect en IRM est caractérisé par l’atteinte des faisceaux corticospinaux sur toute leur étendue en plus d’une atteinte plus diffuse de la substance blanche périventriculaire. Le diagnostic final repose sur l’examen neuropathologique qui met en évidence, outre la perte myélinique et axonale, la présence de renflements axonaux sphériques ou ovoides caractéristiques.

Leucodystrophies avec lésions vasculaires

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy

cette maladie, de transmission autosomique dominante, est due à des mutations du gène Notch3, codant pour un récepteur membranaire et exprimé dans les cellules musculaires lisses des parois vasculaires de nombreux organes [107, 108]. Les mutations de Notch3 sont responsables de l’accumulation de la partie extracellulaire du récepteur dans les parois vasculaires. L’atteinte
neurologique est liée aux lésions des petites artères (artéioles et capillaires) cérébrales. Un syndrome dépressif peut précéder pendant une dizaine d'années les signes neurologiques. Des crises de migraines, le plus souvent avec aura, apparaissent quelques années avant les accidents vasculaires (accidents ischémiques transitoires, ou constitués de type lacunaire) qui apparaissent souvent avant l'âge de 30 ans. L'évolution se fait vers un état multilacunaire avec syndrome démentiel sous-cortical, syndrome extrapyramidal et syndrome pseudobulbaire. Les patients peuvent présenter en outre des épisodes d'encéphalopathie précédés de manifestations migraineuses et associant troubles de la vigilance (confusion), fièvre, céphalées et crises d'épilepsie spontanément régressifs en 1 à 2 semaines. L'IRM montre des séquelles de lacunes multiples, une leucoencéphalopathie périventriculaire qui touche également et ce, de façon très caractéristique, la capsule externe, la substance blanche des pôles temporaux et le corps calleux. Le diagnostic repose sur l'analyse moléculaire du gène Notch3. Il n'existe pas de traitement connu de cette affection.

Maladie de Fabry

La maladie de Fabry, de transmission récessive liée à l’X, est due à un déficit en α-galactosidase lysosomale, responsable de l'accumulation pathogène de globotriaosylceramides essentiellement dans les lysosomes des cellules endothéliales [108]. L'accumulation se fait aussi, à un moindre degré, dans de nombreux autres types cellulaires expliquant l'atteinte multisystémique de la maladie. Chez l’homme hemizygote, les premiers symptômes apparaissent habituellement dans l’enfance mais parfois au cours des 2e ou 3e décennies et associent le plus souvent des acroparesthésies (crises douloureuses récurrentes touchant les extrémités, souvent déclenchées par l’effort, la chaleur, la fièvre, le stress); des angiothromboses (dilatations veineuses sous-cutanées localisées préférentiellement entre l’ombilic et les genoux) et une hypohydrose (insuffisance à la chaleur). L’examen ophthalmo-logique permet de retrouver une corne verticillée (dépôts corneens disposés en « rayons de roue »), souvent associée à des dépôts cristallins, voire à une cataracte. Les atteintes cardiaque et rénale, plus tardives, font la gravité de la maladie. Des accidents vasculaires cérébraux surviennent chez un tiers des hommes hémizygotes et peuvent parfois être responsables de la maladie [109-110]. Il s’agit le plus souvent d’accidents ischémiques transitoires (AIT), parfois d’accidents ischémiques constitués. Ils sont liés à une atteinte des petites artères cérébrales avec, dans 20 à 40 % des cas, des dolicho-méga-vaisselles. Dans plus de 60 % des cas, les accidents vasculaires cérébraux (AVC) intéressent le territoire vertébro-baissaire et ont un caractère récidivant [106]. En IRM, outre une possible leucoencéphalopathie vasculaire et des séquelles d’AVC le plus souvent de petite taille, on peut observer, dans environ 20 % des cas, un hypersignal des pulvinars en séquence T1 (signe du pulvinar) [111]. Les femmes hétérozygotes présentent des signes atypiques de la maladie : ceux-ci se limitent en général à une corne verticillée (70 % des cas), des angiothromboses (30 %) ou des acroparesthésies (10 % des cas). Cependant, les accidents ischémiques ainsi que la leucoencéphalopathie périventriculaire IRM semblent aussi fréquents que chez l’homme hémizygote [109, 112].

Diagnostic et traitement

Le diagnostic de la maladie repose sur le dosage de l’α-galactosidase leucocytaire, éventuellement complété par la recherche de globotriaosylceramides urinaires. Depuis plusieurs années, une enzyme recombinante est disponible pour le traitement de la maladie de Fabry. L'effet de ce traitement a été démontré sur l'atteinte cardiaque et rénale. Toutefois, l'effet sur la prévention des AVC reste à déterminer.

Conclusion (Fig. 9)

La découverte d’une leucoencéphalopathie d’origine inexpliquée est devenue une situation relativement fréquente avec l’avènement de l’IRM cérébrale. À travers cette présentation générale, nous avons voulu montrer que de nombreuses pathologies génétiques peuvent en être à l'origine, le terme de « leucoencéphalopathie génétique » ayant supplanté progressivement celui de « leucodystrophie ». Certaines répondent à un traitement efficace et doivent être recherchées en priorité. Du fait de la rareté de ces pathologies, une approche pluridisciplinaire incluant neurologues, neuroradiologues, métaboliciens, généticiens et neuropédiatres est indispensable.

Références

Figure 9. Arbre décisionnel. IRM : imagerie par résonance magnétique.