Compression médullaire lente

E. Mireau, G. Dib Antunes Filho, S. Gaudart

Le syndrome de compression médullaire lente est une urgence diagnostique et thérapeutique. Le tableau clinique doit être rapidement reconnu et investigué car la sanction thérapeutique, souvent chirurgicale, doit être réalisée le plus rapidement possible pour limiter les conséquences fonctionnelles sévères (paraplégie). Une bonne connaissance de l’anatomie rachidienne et neurologique fonctionnelle permet souvent d’orienter les explorations et le diagnostic toponographique. L’imagerie par résonance magnétique rachidienne et médullaire est à l’heure actuelle l’examen de référence à réaliser en urgence dans ce contexte. On classe habituellement les étiologies compressives en trois catégories de lésions : intramédullaires, relativement rares ; extramédullaires intradurales, dont les deux principales sont le méningiome et le neurinome ; et les lésions extradurales, les plus fréquentes, en particulier les métastases vertébrales ou épidurales et les infections du rachis.

Mots clés : Compression médullaire ; Compression médullaire lente ; Paraplégie ; Paraparésie ; Astrocystome ; Méningiome ; Neurinome ; Métastase vertébrale ; Rachis ; Mal de Pott ; Tuberculose ; Empyème épidural ; Épendymome ; Plasmocytome

© 2009 Elsevier Masson SAS. Tous droits réservés.

Plan

- Généralités
 - Rappel anatomique
 - Anatomie fonctionnelle
 - Vascularisation
 - Clinique
 - Compression médullaire
 - Bilan paraclinique
 - Imagerie par résonance magnétique (IRM)
 - Scanner
 - Radiographie standard
 - Myélographie
 - Scintigraphie
 - Artériographie médullaire
 - Biologie sanguine
 - Biologie du liquide céphalo-rachidien
 - Diagnostic étiologique
 - Lésions intramedullaires
 - Lésions intradurales extramedullaires
 - Lésions extradurales
 - Diagnostics différentiels

Les étiologies ostéoligamentaires dégénératives ne sont qu’évoquées dans ce chapitre. Le lecteur est invité à se reporter aux chapitres spécifiques pour leur développement.

Rappel anatomique

La moelle épinière s’étend, chez l’adulte, du trou occipital jusqu’au niveau du disque intervertébral L1-L2. Elle mesure en moyenne 45 cm chez l’adulte. Elle est en continuité avec le bulbe (moelle allongée) ; le côte terminal se prolonge caudalement par le filum terminal fixé à la face postérieure du coccyx. La disproportion entre la taille du canal rachidien et la taille de la moelle est le résultat d’une croissance différentielle des deux structures pendant la vie fœtale et les premières années de vie. Ce phénomène explique également l’obliquité des racines, de plus en plus importante depuis le niveau cervical (racines horizontales) jusqu’au niveau lombaire (racines verticales dans la queue de cheval).

La moelle présente une forme à peu près cylindrique en étant légèrement aplatie dans le sens antéro-postérieur. Son calibre n’est pas uniforme ; elle présente deux dilatations appelées renflements cervical et lombaire. Ces renflements correspondent aux secteurs qui donnent naissance aux racines nerveuses qui forment les plexus brachial et lombosacré, destinés à l’innervation des membres supérieurs et inférieurs respectivement. Il existe 31 paires de racines auxquelles correspondent 31 segments médullaires, ainsi distribuées : huit cervicaux, 12 thoraciques (dorsaux), cinq lombaires, cinq sacrés, un coccygien.

La moelle est enveloppée des trois méninges présentes au niveau cérébral : pie-mère en contact étroit avec le tissu médullaire, arachnoïde comportant un feuillet externe relativement étanche et des expansions dans l’espace sous-arachnoïdien qui contient le liquide cérébrospinal, et la dure-mère, enveloppe protectrice épaisse qui présente des évaginations accompagnant les racines jusqu’à leur sortie du foramén intervertébral (toujours

Neurologie
conjugaison). Contrairement à la dure-mère intracrânienne, la dure-mère rachidienne n'est pas adhérente à l'os adjacent. L'espace épidural n'est pas un volume virtuel ; il est constitué de tissus graisseux et de plexus veineux internes plus ou moins développés.

Le canal rachidien est formé par l'empilement des vertèbres et des disques intervertébraux. La paroi du canal est renforcée par des structures ligamentaires (ligament commun vertébral postérieur et ligaments jaunes). Ces structures viennent également réduire le calibre du canal rachidien qui est de 12 à 22 mm au niveau cervical et de 22 à 25 mm au niveau lombaire. Ce canal est considéré comme inextensible : ainsi, toute structure supplémentaire acquise viendrait réaliser une pression sur les structures normales.

Anatomie fonctionnelle

La moelle est constituée de substance blanche et de substance grise. Contrairement à l'étage céphalique, la substance blanche est localisée en périphérie de la substance grise. Dans le centre de la substance grise se localise le canal central de la moelle (ou canal épendymaire), reliquat de la lumière du canal neural de l'embryon.

La substance grise qui contient les corps cellulaires des neurones est divisée en dix couches selon Rexed ; elle présente deux couches antérieures motrices en regard des radicelles antérieures et deux couches postérieures sensitives en regard des radicelles postérieures. Cette substance grise comporte en particulier une partie du système végétatif localisé entre la corne antérieure et postérieure. Ces structures végétatives sont particulièrement développées au niveau thoracique (système sympathique de C8 à L2 : corne latérale), et sacré (système parasympathique de S2 à S4). La substance blanche n'est formée que de fibres de passage ; elle est divisée en cordons :

- cordon postérieur : comporte en particulier les faisceaux ascendants sensitifs épicritiques et proprioceptifs (gracile et cunéiforme) ;
- cordon latéral : comporte en particulier le faisceau corticospinal pyramidal et le faisceau spinothalamique thermoalgie ;
- cordon antérieur : comporte en particulier le faisceau pyramidal direct et des faisceaux extrapyramidaux.

Les informations du tact épicritique et proprioceptif qui circulent dans le cordon postérieur restent homolatérales à la stimulation et ne croisent la ligne médiane (décussation) qu'au niveau bulbaire supérieur. À ce stade, les informations thermoalgie qui arrivent dans la corne postérieure décussent à l'étage segmentaire en passant par la commissure antérieure à gramine, le cordon du canal épendymaire, pour ensuite rejoindre le faisceau antéro-latéral spinothalamique controlatéral à la stimulation. Il existe à l'intérieur même de ces faisceaux une disposition somatotopique.

Vascularisation

La moelle spinale est irriguée par les artères spinales antérieures et postérieures, branches de l'artère vertébrale, et par les artères radiculaires, qui pénètrent dans la moelle avec les racines des nerfs spinaux.

L'artère spinale antérieure est un tronc unique formé par le confluent de deux courtes branches récurrentes qui émergent des artères vertébrales droite et gauche. Elle se dispose superficiellement dans la moelle, au long de la fissure moyenne antérieure jusqu'au côté médullaire. Elle émet des artères qui se détachent perpendiculairement et pénètrent dans le tissu nerveux par le fond de la fissure moyenne antérieure. Les artères spinales antérieures vont vasculariser les cordons antérieur et latéral de la moelle. Habituellement, cinq à huit artères plus volumineuses rejoignent directement les artères spinales. L'artère de l'ontournement lombaire (artère d'Adamkiewicz) est une artère radiculaire impaire plus volumineuse qui assure à elle seule la vascularisation d'environ deux tiers de la moelle spinale. Elle accompagne le plus souvent l'une des dernières racines thoraciques le plus souvent du côté gauche vers l'étage D9 ou D10.

Les artères spinales postérieures droite et gauche émergent des artères correspondantes, se dirigent dorsalement en contournant le bulbe et ensuite couvrent longitudinallement la moelle, en dedans des radicelles dorsales des nerfs spinaux. Les artères spinales postérieures font la vascularisation du cordon postérieur de la moelle.

La circulation des artères spinales antérieures et postérieures peut s'effectuer dans le sens craniocaudal ou en sens inverse. De ce fait, la pathologie vasculaire artérielle survient surtout dans les territoires frontières entre deux territoires vasculaires artérielles principaux. Les zones particulièrement vulnérables se situent à la limite des territoires vasculaires de deux artères segmentaires principales, au niveau cervical (corps de C4), cervicothoracique (C3-T4) et thoracolumbar (T8-T9) [1].

Le drainage veineux de la moelle spinale est assuré par un réseau très variable de veines intramédulaires vers les veines spinales antérieures et postérieures. Ces dernières forment un réseau circonférentiel et longitudinal au sein de la gaine métric. La veine spinale antérieure assure le drainage des deux tiers antérieurs de la substance grise, les veines postérieures et latérales assurent le drainage des autres territoires. Les veines radiculaires amènent ensuite le sang aux plexus veineux vertébraux internes et externes.

Les veines de ce plexus sont dépourvues de valves et ont une communication avec les veines des cavités thoracique, abdominale et pelvienne. Ceci explique l'augmentation de pression de ces cavités provoquée, par exemple, par la toux, poussant le sang vers les plexus veineux vertébraux. Cette dilatation des veines epidurales est également visible lors de la grossesse (Fig. 1). Cette inversion possible du flux veineux explique également la dissémination, pour le nœud et pour la moelle, d'infécctions, ou de métastases à partir de processus localisés primitivement en région thoracique, abdominale ou pelvienne.

Clinique

La compression médullaire non traumatique doit être diagnostiquée dès les premiers signes cliniques car elle nécessite
une prise en charge urgente. Reconnaître une compression médullaire lente au stade initial (au moment des premiers signes cliniques) est capital pour une prise en charge optimale et un meilleur pronostic. La symptomatologie du stade para- ou de tétraplégie flasque n’a que peu d’intérêt étant donné la très faible probabilité de récupération fonctionnelle.

Compression médullaire
Le diagnostic de compression médullaire non traumatique est établi sur l’existence d’un syndrome rachidien, d’un syndrome lésionnel et d’un syndrome sous-lésionnel. Ces trois éléments classiques du syndrome de compression médullaire ne sont pas nécessairement présents simultanément. L’ensemble des manifestations cliniques des compressions médullaires traduit une souffrance de l’axe nerveux qui peut être secondaire à :

- des phénomènes compressifs mécaniques purs des cordons médullaires à l’origine d’une perturbation des fonctions assumées par les faisceaux renfermés dans ces cordons ;
- des phénomènes vasculaires : la compression des vaisseaux médullaires (artères ou veines) est alors à l’origine d’une ischémie médullaire, surtout en cas d’atteinte artérielle.

Ces deux phénomènes peuvent être associés.

D’autre part, il faut remarquer que plus le processus compressif évolue lentement, plus la moelle s’adapte à cette compression lente. Dans un premier temps, la moelle est simplement refoulée (phase asymptomatique) puis comprimée (début des manifestations cliniques). Cette lenteur d’évolution explique le caractère insidieux de certaines manifestations cliniques dans ce cadre. Si la compression touche d’abord une racine, longtemps les manifestations radicales seront seules en cause, avant que n’apparaissent les manifestations médullaires, si le diagnostic n’a pas été fait auparavant.

La sémiologie des compressions médullaires dépend donc du siège en hauteur et en largeur de la compression par rapport à la moelle ainsi que de son mode évolutif.

Le tableau clinique classique d’une compression associe un syndrome rachidien traduisant l’atteinte des structures ostéoligamentaires, un syndrome lésionnel correspondant à l’atteinte radiculaire, un syndrome sous-lésionnel correspondant à l’atteinte des voies longues.

Syndrome rachidien
Le syndrome rachidien traduit la souffrance des éléments ostéo-disco-ligamentaires du canal rachidien. On comprend aisément qu’il soit surtout marqué dans les affections extradurales prenant naissance au niveau d’un de ces éléments constitutifs. Il est aussi mieux mis en évidence au niveau cervical ou lombaire qu’en région dorsale en raison de la grande mobilité de ces segments. Il peut s’agir d’une douleur radiculaire localisée, spontanée ou provoquée, d’une attitude anormale, d’une limitation des amplitudes de mouvement du rachis.

Une déformation de la colonne vertébrale est parfois observable dès la phase précoce (plus volontiers chez les enfants).

Syndrome lésionnel
Le syndrome lésionnel est constitué de douleurs radiculaires souvent isolées à la phase initiale. Ces radiculalgies sont de topographie constante signalant le dermatoïde lésionnel (névralgies cervicobrachiales, algies thoraciques en ceinture). Elles surviennent le plus souvent en éclairs, par sursauts et sont impulsives à la toux. Elles peuvent s’estomper dans la journée avec l’activité physique et ne se manifester qu’au repos, surtout la nuit, à heures fixes, pouvant s’atténuer à la déambulation nocturne. Elles peuvent être associées à un déficit radiculaire objectif avec hypoesthésie en bandes dans le territoire douloureux avec abolition, diminution ou inversion d’un réflexe, pouvant même aboutir à un déficit moteur avec amyotrophie dans le même territoire radiculaire.

Ces symptômes sont au début plus discrets à l’étage thoracique ou abdominal qu’au niveau cervical où la névralgie cervicobaïochrulaire est plus typique. Ce syndrome radiculaire lésionnel, lorsqu’il existe, permet de déterminer le niveau de la compression et d’orienter les explorations neuroradiologiques.

Syndrome sous-lésionnel
Le syndrome sous-lésionnel correspond à l’atteinte des voies longues qui transitent par l’étage de la compression. Il peut associer des troubles moteurs, sensitifs et sphinctériens d’évolution plus progressive. L’extrémité, l’atteinte pyramidale peut aboutir à une paraplegie ou une tétraplegie spastique. Les troubles sensitifs accompagnent habituellement les signes moteurs mais le plus souvent de façon retardée. Un signe de Lhermitte est possible (décharge électrique le long du rachis et des membres à la flexion du cou). Le déficit sensitif n’est pas toujours complet, il peut être initialement cordonal postérieur (atteinte de la sensibilité discriminative, de la proprioception) ou spinothalamique (déficit thermoalgique).

Le syndrome de Brown-Séquard est une forme correspondant à une souffrance d’une hémimoloi. Il exprime cette dissociation des voies de la sensibilité avec un syndrome cordonal postérieur et un syndrome pyramidal homolatéraux à la lésion, et un déficit spinothalamique du côté opposé à la lésion.

Les troubles urinaires (miction impérieuse, dysurie), sexuels ou anorectaux (constipation) sont très tardifs dans les compressions médullaires sauf si la lésion est située dans le cordon terminal. En revanche, dans les compressions médullaires évoluées, les troubles sphinctériens sont quasi constants.

Dans les formes d’aggravation rapide, un phénomène d’ischémie médullaire (myélomalacie) d’origine vasculaire, peut être évoqué, assombrissant encore le pronostic fonctionnel.

Formes topographiques en hauteur
Compression cervicale haute entre C1 et C4. Le syndrome sous-lésionnel est constitué d’une quadriplegie spastique. Les lésions ont la particularité de provoquer une tétraplegie, évoluant en U, selon les auteurs classiques ; leur niveau est difficile à préciser entre C1 et C2.

Les lésions cervicales qui se développent au voisinage du trou occipital peuvent s’accompagner d’un syndrome sus-lésionnel comportant :
- une hydrocéphalie par blocage de l’écoulement du liquide céphalorachidien (LCR) ;
- un puddle de la mobilité de la face dans le territoire du nerf ophthalmique ou du nerf mandibulaire par atteinte du noyau trigéminal spinal, voire une névralgie faciale.

Le syndrome lésionnel peut s’exprimer par une névralgie d’Arnold (radiculalgie C2 se manifestant par une douleur occipitale pouvant irradier vers l’oreille ou l’angle de la mâchoire) ou par une atteinte de la musculature diaphragmatique, une paralysie du sterno-cléido-mastoïdien, du trapèze ou par un hoquet signant la compression phrénique unilatérale si la lésion se développe en regard de C4. Dans les stades les plus évolués, il peut donc exister une paralysie phrénique.

Compression cervicale basse entre C5 et D1. Elle est à l’origine d’une atteinte des racines du plexus brachial et à l’origine d’un syndrome lésionnel franc avec atteinte sensitivo-motrice et réflexe.

Elle s’exprime par une paralysie spastique. Lors d’une compression entre C8 et D1, il est habituel d’observer un syndrome de Claude Bernard-Horner homolatéral.
- Un syndrome de la racine C5 : la douleur irradiant de la base de la nuque et suit l’axe de l’avant-bras et du bras à la face palmaire et s’arrête en dehors à la naissance du poignet. Le déficit moteur touche l’abduction et la rotation externe de l’épaule. Le réflexe bicipital est diminué ou aboli.
- Un syndrome lésionnel C6 : la douleur et l’hypoesthésie intéressent la face supérieure du bras et de l’avant-bras débordant sur leurs faces dorsale et palmaire, la tabatière anatomique, l’éminence thénar et le pouce. Le déficit moteur
touche la flexion du coude, la pronosupination de l’avant-bras et le long supinateur. Le réflexe styloéradial est diminué ou aboli.

- Un syndrome lésionnel C8 : les phénomènes subjectifs touchent la moitié inférieure de la face dorsale de l’avant-bras et du bras et débordent l’annulaire et l’auriculaire en passant par le bord cubital de la main. Le déficit moteur touche les petits muscles de la main (mouvements du pouce, abduction et adduction des doigts). Le réflexe cubito-pronateur est atteint.

- Un syndrome lésionnel D1 : la douleur irradiée du manubrium sternal et se prolonge à la face antérieure du bras et de l’avant-bras dont elle parcourt la moitié inférieure pour se terminer au niveau des plis du poignet. Le déficit moteur est similaire à l’atteinte C8.

Compression de la moelle dorsale. La compression au niveau dorsal donne rapidement une paralysie. Il existe souvent des douleurs thoraciques ou abdominales liées à une anesthésie en bande. Les réflexes cutanés abdominaux correspondants supérieurs (T8), moyens (T12) et inférieurs (L1) peuvent être abolis par l’atteinte pyramidal sus-jacente.

Le niveau sensitif, quand il est retrouvé, est un bon repère pour estimer cliniquement le niveau de la compression :

- le mamelon correspond au métrême D4 ;
- l’apophyse xiphoïde correspond au métrême D6 ;
- l’ombilic correspond au métrême D8 ;
- le pubis correspond au métrême D12.

Compression au niveau du cône terminal. La compression du cône terminal est suspectée devant des troubles moteurs à type de déficit de la flexion de la cuisse sur le bassin, une abolition des réflexes cutanés abdominaux inférieurs, une abolition du réflexe crémastérium (L1-L2), rotulien (L3-L4) ou achiilléen (S1), mais avec un signe de Babinski qui peut ne pas être retrouvé. Cette association de signes périphériques et de signes centraux est classique dans l’atteinte du cône terminal. Il existe de façon quasi constante et sévère des troubles sphinctériens ainsi que des troubles sensitifs de niveau D12-L1. Il existe une perte du cône terminal par atteinte de la queue de cheval (caractérisée par une paralysie flasque et une anesthésie en selle), ce qui rend parfois la distinction de ces deux entités difficile.

Formes topographiques en largeur

Compressions antérieures. L’atteinte motrice prédomine lors des compressions antérieures. Les troubles sphinctériens sont fréquents. La compression artérielle spinale antérieure peut parfois provoquer des lésions ischémiques de la moelle ayant pour conséquence un tableau déficitaire brutal et massif.

Compressions postérieures. La symptomatologie initiale lors d’une compression postérieure est principalement constituée des troubles sensitifs. Les lésions se développant en arrière de la moelle, qui compriment en premier lieu les cordons postérieurs de la moelle, se révèlent parfois par des troubles sensitifs profonds. Des douleurs de type « cordonal postérieur », parfois associées, peuvent faire évoquer un tabes ou une sclérose combinée de la moelle, surtout lorsqu’un syndrome pyramidal est retrouvé.

Compressions latéro-médullaires. La compression latérale de la moelle peut au cours de l’évolution être responsable d’un syndrome de Brown-Séquard plus ou moins net. Il traduit une compression d’une hémimolée. Il se traduit cliniquement par :

- des troubles moteurs et de la sensibilité profonde et épicrétique du côté de la compression ;
- des troubles de la sensibilité thermoalégique du côté opposé à la compression.

Ce tableau est souvent incomplet.

Forme et évolutivité

Sur un plan clinique, on décrit plusieurs formes de syndrome de compression médullaire. Le tableau clinique peut évoluer dans le temps d’une forme à l’autre. La forme initiale est le plus souvent la forme spasmodique, contrairement aux situations de section médullaire aiguë traumatique qui se présentent le plus souvent avec une paralysis flasque à la phase initiale.

- **Parésie spasmodique** : il s’agit de la forme initiale habituelle des compressions médullaires lentes. L’atteinte motrice peut être modérée : fatigabilité à la marche ; réduction du périmètre de marche en aggravation progressive. Le signe le plus évocateur à ce stade est l’irritation pyramidal par atteinte des voies inhibitrices corticospinales sur la boucle myotactique : réflexes ostéotendineux vifs polyclinétiques diffusées avec élargissement de la zone réflexogène dans le territoire sous-lésionnel ; signe de Babinski ; abolition des réflexes cutanés abdominaux en fonction du niveau de la compression. L’atteinte sensitive est inconstante, généralement incomplète. Le mode de sensibilité atteint en premier est souvent la fonction proprioceptive. Il arrive que le syndrome lésionnel vienne au premier plan, mais il peut également être absent.

- **Plégie flasque** : il existe dans cette forme une section complète des voies longues, sensitives et motrices. Le tableau de paralysie et d’anesthésie à tous les modes est complet dans le territoire sous-lésionnel. On peut alors voir apparaître des automatismes médullaires à type de triple retrait. Une plégie flasque d’apparition brutale doit faire évoquer une atteinte vasculaire avec myélomalacie. Les réflexes ostéotendineux sont souvent abolis.

- **Parésie hyperspasmodique** : cette forme est souvent le résultat de l’évolution de la forme spasmodique. L’hypertonie, majeure, vient au premier plan, réalisant des positions vicieuses non fonctionnelles, voire des rétractions. Les troubles sphinctériens et d’obstacle sont souvent importants à ce stade.

Bilan paraclinique

Imagerie par résonance magnétique (IRM)

L’IRM reste aujourd’hui l’examen de référence pour la prise en charge en urgence d’un syndrome de compression médullaire. Cette IRM doit être réalisée en urgence immédiate, dès la suspicion du diagnostic à partir de la clinique. Seules les situations où il ne peut être pratiqué aucun traitement curatif, quel que soit le résultat de l’imagerie, permettent de retarder cette IRM médicale.

Une injection de gadolinium doit être réalisée systématiquement pour différencier une tumeur [2].

Les différentes séquences doivent permettre d’analyser les faisceaux rachidiens, méningés et médullaires. Le cordon médullaire et les espaces péri-médullaires doivent être visualisés dans les trois plans de l’espace. Chez les patients qui présentent des douleurs radiculaires importantes, il est conseillé de débuter cet examen par des séquences rapides et des antennes en série permettant d’examiner la totalité du rachis. Des séquences en saturation de graisse permettent de visualiser une lésion située dans un environnement tissulaire spontanément hyperintense (en particulier l’os spongiosus du corps vertébral et la graisse épidermale) [3-5].

Par ailleurs, l’IRM permet d’avoir des informations concernant le niveau de souffrance présumé de la moelle autour de la compression.

Les lésions épidurales doivent faire analyser la totalité du rachis et son environnement squelettique à la recherche d’autres localisations. Les lésions intradurales sont des formes ovoides

Scanner

Le scanner reste toujours un examen utile, voire indispensable dans la prise en charge d’un syndrome de compression médullaire. Dans un premier temps, il permet souvent d’avancer dans le diagnostic lorsque l’hypothèse la plus probable, compte tenu du contexte, est celle d’une origine osseuse, et que l’accès à l’IRM n’est pas immédiatement disponible.

Par ailleurs, l’analyse des structures osseuses est souvent indispensable, dans un second temps, lorsque l’IRM a déjà fait le diagnostic de la compression. Le scanner permet alors de révéler des complications locales osseuses de la lésion causale. Il permet de ne pas préparer les différentes étapes d’une éventuelle intervention chirurgicale de décompression. Des fenêtres osseuses doivent donc systématiquement être réalisées.

Dans la situation d’une lésion osseuse néoplasique, le scanner recherche systématiquement d’autres localisations rachidiennes ostéolytiques ou ostéocoïnées (1-8).

Radiographie standard

Les radiographies simples du rachis n’ont quasiment plus aujourd’hui d’intérêt dans la prise en charge d’un syndrome de compression médullaire. Les lyses osseuses ou les ostéocoïnations ne sont visibles qu’à un stade avancé.

Les images classiquement visualisées sont : tassement vertébral ; scalloping (atteinte du mur postérieur refoulé vers l’avant) ; vertèbre borgne (atteinte d’un pédicule) ; élargissement de la distance interpédiculaires (signe d’Elshberg) ; élargissement du trou de conjugaison (généralement lors d’un neurinome) ; atteinte des plateaux sus- et sous-jacent d’un disque (généralement infectieux).

La radiographie du rachis (qui est généralement réalisée lors de l’acquisition spiralée du scanner) permet dans certains cas de visualiser une anomalie transitionnelle de la jonction lombosacrée.

Par ailleurs, la radiographie standard garde une utilité non négligeable en phase préopératoire immédiate. Il est possible de réaliser une radiographie du rachis de face après la mise en place d’un repère métallique sur la peau (un trombone ou une pièce de monnaie sous une bande collante) au niveau présumé de la compression. Il est alors préférable, dans la mesure du possible, de réaliser cette radiographie dans la position prévue de l’intervention (sédiants ventraux le plus souvent) pour éviter un déplacement secondaire du repère par rapport aux structures osseuses.

Myélographie

Le caractère invasif de la myélographie rend son utilisation de cet examen de plus en plus rare. Le gain d’information par rapport à l’IRM est souvent absent. Les aspects classiques en « dents de peigne » (lésions extradurales), en « cupule » (lésions intradurales extradurales) sont encore décrits.

Un seul avantage peut encore être reconnu à la myélographie : lorsqu’il existe plusieurs niveaux de compression potentiels sur l’IRM (lésions métastatiques multiples en particulier) et que l’étendue de l’atteinte ne permet pas d’envisager un traitement global, la myélographie permet parfois de situer le niveau de compression effective et ainsi de cibler le traitement local (chirurgie ou radiothérapie).

Scintigraphie

La scintigraphie osseuse du rachis n’est pas un examen de diagnostic étiologique dans une situation de syndrome de compression médullaire, en particulier en urgence. Elle est utilisée pour le dépistage précoce de lésions osseuses métastatiques ou dans une situation de rachialgies sans lésions décelables à la radiographie.

Dans les cas de compressions d’origine osseuse avérée, la scintigraphie recherche d’autres localisations pour envisager leur traitement avant leur progression.

Il faut rappeler que la visualisation d’une hyperfixation sur la scintigraphie osseuse garde une valeur prédictive positive de lésion tumoraire relativement faible. La sensibilité élevée de cet examen met également en évidence des atteintes bénignes (fracture-tassement, arthrose) (8).

Artériographie médullaire

L’indication de l’artériographie médullaire est rare. Celle-ci est réalisée lorsqu’il existe une suspicion, sur l’IRM, de malformation artério-veineuse médullaire ou une fistule durelle.

L’intérêt de cet examen est préopératoire d’une intervention de décompression au niveau dorsal bas est controversé. Le repérage de l’artère radiculomédullaire d’Adamkiewicz apporte, en effet, des informations anatomiques (cette artère est plus généralement située en D9-D10 à gauche mais il existe des variations anatomiques fréquentes). Mais ces informations ne viennent pas réellement modifier la démarche thérapeutique. Quelle que soit l’anatomie artérielle, le geste chirurgical doit systématiquement préserver autant que possible toutes les artères radiculomédullaires.

Biologie sanguine

L’analyse biologique sanguine permet parfois d’avancer dans la découverte de l’étiologie d’une compression médullaire diagnostiquée.

On recherche en particulier une hémopathie, un syndrome infectieux ou inflammatoire, la positivité de certaines sérologies bactériennes, une anomalie du bilan phosphocalcique.

Par ailleurs, dans l’éventualité de la nécessité d’une décompression, un bilan préopératoire est systématiquement réalisé lors de la prise en charge.

Biologie du liquide céphalorachidien

Devant un tableau de syndrome de compression médullaire, la ponction lombaire est contre-indiquée en première intention. Les modifications structurelles peuvent favoriser une lésion neurologique directe ou une hémorragie : par ailleurs, le flux engendré par la ponction peut venir décompenser une compression plus haute située (des cas d’aggravations brutales des symptômes déficitaires, par ces mécanismes de modifications hydronucléiques, sont classiquement décrits dans les suites immédiates de ponctions lombaires).

Après analyse de l’imagerie rachidienne et médullaire, une ponction de faible volume et faible débit peut toutefois être envisagée en cas de nécessité pour le diagnostic étiologique.

On recherche en particulier des cellules anormales en anatomo-pathologie, en faveur d’une méningite carcinomateuse ou d’une métastase leptoméningée.

Diagnostic étiologique

Les étiologies du syndrome de compression médullaire sont classées selon leur localisation par rapport à la moelle et aux méninges, intramédullaire, intradurale extramédullaire, extradurale.

Lésions intramédullaires

Lésions intramédullaires tumorales

Les tumeurs de moelle épinière sont des lésions rares. Le développement d’une tumeur dans le parenchyme médullaire
peut avoir un effet direct d’interruption des voies neurologiques, ou encore provoquer des lésions médullaires par étirement ou par compression. La symptomatologie initiale dépend de la localisation précise dans la moelle.

Épendymome

Parmi les tumeurs gliales médullaires (gliomes : astrocytome, oligodendrogliome, gangliogliome, épéndymome), l’épendymome est la plus fréquente. Cela reste malgré tout une tumeur rare (quelques dizaines de cas par an en France). L’épendymome est plus souvent diagnostiqué chez des adultes jeunes dans la quatrième décennie de la vie ; il est plus fréquent chez l’individu de sexe masculin [9, 10].

La lésion est plus fréquemment située dans la partie postérieure de la moelle.

L’anatomopathologie des épéndymomes intramédullaires n’est pas différente de celle que l’on constate dans les épéndymomes de la queue de cheval, plus fréquents. Il peut d’ailleurs exister des formes mixtes : lésion intramédullaire associée à une portion exophytique extramédullaire ; une telle image est fortement évocatrice de ce diagnostic histologique.

Des métabases leptoméningées ne sont pas exclues. Il est donc nécessaire de réaliser une imagerie complète de tout le névraxe (moelle et encéphale) [11].

L’imagerie peut montrer un élargissement de la distance entre les péridicules vertébraux, un scalloping, du fait du développement relativement lent de ces lésions. Le calibre de la moelle est élargi. La lésion et son oedème péri-tissénel sont en hypersignal T1 et hypersignal T2 ; la lésion seule se rehausse de manière homogène après injection de produit de contraste (Fig. 2) ; ses limites sont relativement nettes. L’imagerie recherche les kystes syringomyéliques sus- et sous-jacents associés.

Les épéndymomes médullaires sont plus souvent des tumeurs bénignes à développement très lent (histologiquement : tubules épénéymaires, couronnes pérvasculaires, aspect papillaire ou myxopapillaire). Le délai entre les premiers signes et le diagnostic est souvent très important.

Le traitement des épéndymomes intramédullaires repose principalement sur la chirurgie d’exérèse la plus complète possible. En cas de persistance d’un résidu tumoral, la radiothérapie sur le résidu doit être discutée en fonction du degré de prolifération et de l’évolutive.

Astrocytome

Le potentiel de développement des astrocytomes intramédullaires est souvent plus important que celui des épéndymomes.

L’évolution clinique est plus rapide du fait du caractère envahissant de la tumeur dans le parenchyme médullaire. L’IRM met souvent en évidence des limites tumorales peu précises, étendues à plusieurs étages de la moelle (on décrit même des astrocytomes « panmédullaires » chez l’enfant). L’aspect est plus hétérogène que celui de l’épendymome : kystes intratumoraux ; hémorragies intratumorales.

L’histologie est souvent bénigne (astrocytome fibrillaire ou pilocytique) mais peut se transformer vers une forme maligne de pronostic très sombre [12].

Le traitement des astrocytomes médullaires repose principalement sur la radiothérapie. La chirurgie initiale de réduction tumorale améliore sensiblement le pronostic et permet surtout le diagnostic histologique [13].

Oligodendrogliome et gangliogliome

Les autres tumeurs giales sont extrêmement rares en localisation intramédullaire. Le traitement retenu est comparable à celui des astrocytomes [14, 15].

Tumeur de la lignée neuronale

Ces tumeurs (neuroblastome, tumeur neuroectodermique primitive [PNET], ganglioneurome) sont également exceptionnelles en localisation médullaire.

Tératome

Des cas de tératomes intramédullaires sont décrits. On constate une hétérogénéité importante à l’imagerie, du fait de leur origine, les trois feuilles embryonnaires [16, 17].

Lymphome

Les lymphomes intramédullaires sont rares ; ils sont parfois constatés lors d’un lymphome cérébral ou systémique. Les lymphomes médullaires primitifs sont exceptionnels [18, 19].

Lipome

Le lipome intramédullaire est plus fréquemment diagnostiqué chez l’enfant lors de la constitution de sa masse graisseuse. L’IRM met en évidence une lésion souvent postérieure dans le canal rachidien, un signal graisseux (hyper-T1, hyperiso-T2, atténué par les séquences en saturation de graisse « fatsat ») ; un dysraphisme associé (mieux visualisé par le scanner) n’est pas obligatoire pour évoquer le diagnostic [20].

Les principes du traitement reposent sur une exérèse subtotale ou partielle ; il est convenu généralement de ne pas retirer l’interface de jonction avec la moelle ; l’objectif est décompressif, associé à une plastie dural d’agrandissement [21, 22].

Hémangioblastome

Les localisations médullaires d’hémangioblastomes sont rares. Elles signent souvent une phacomatose de von Hippel-Lindau [23, 24]. Ces tumeurs vasculaires se drainent vers les veines piales qui peuvent présenter un aspect dilaté et tortueux à l’imagerie. La portion chorée, bien limitée de la tumeur prend fortement le contraste de manière homogène (Fig. 3) ; la portion kystique est de signal identique au LCR. Une hémorragie tumorale intrakystique est possible.

Le traitement est l’exérèse chirurgicale seule [25]. Une surveillance rapprochée doit être instituée pour visualiser précocement une récidive locale ou une autre localisation.

Métastases

Les métastases intramédullaires sont rares. Elles sont rencontrées lors de cancers (poumon, sein) multimétastatiques avancés [26, 27].

Kystes épidermoides et dermoides

La localisation intramédullaire de ces kystes dérivés de l’ectoderme (et partiellement mésoïderme pour le kyste dermoïde) est moins fréquente que la localisation au contact du
cône terminal ou de la queue de cheval. Ils sont plus souvent diagnostiqués chez l’adulte jeune ; l’évolution clinique est très lente ; la localisation est préférentiellement dorsale basse, dans les cordons postérieurs.

L’aspect IRM est en hypo-T1 franc, hyper-T2 parfois hétérogène. La coque peut prendre le contraste. Il existe parfois un lipome associé.

Le traitement est la chirurgie ; il convient alors de ne pas être agressif compte tenu du caractère non infiltrant et du potentiel évolutif très faible, même en présence d’un résidu.

Parasitose intramedullaire

Hydatidose, échinococcose, cysticercose sont décrites en localisation intramedullaire. Bien qu’extrêmement rare, la plus fréquente est la cysticercose (auto-infestation par les oncosphères d’un Taenia solium ; les embryons dans la circulation sanguine peuvent se fixer n’importe où dans le corps humain pour former des larves enkystées appelées cysticerques). L’atteinte cérébrale est bien plus fréquente du fait du flux sanguin 100 fois supérieur [28, 29].

L’IRM montre des régions kystiques dans le parenchyme. Il existe alors souvent des localisations cérébrales associées [30]. Un nodule iso-intense est parfois visualisé en T1 (scolex larvaire).

Le traitement médical antiparasitaire n’est pas suffisant. L’exérèse chirurgicale est nécessaire si la lésion est symptomatique [31].

Abscès

Seulement quelques cas d’abscesses intramedullaires ont été décrits [32].

Tuberculome

Même dans les pays d’endémie tuberculeuse, le tuberculome intramedullaire reste rare. Si le diagnostic histologique de la pièce d’exérèse retrouve un granulome inflammatoire compatible, un traitement antituberculeux doit être institué [33].

Autres étiologies non tumorales

La constatation d’un processus occupant l’espace intramedullaire doit encore faire évoquer d’autres diagnostics : syringomyélie, malformation artério-veineuse, cavernome, hématome spontané (sur malformation artério-veineuse, fistule artério-veineuse, cavernome).

Les lésions inflammatoires neurologiques (sclérose en plaques en particulier) peuvent parfois prendre des aspects pseudo-tumoraux.

Lésions intradurales extramedullaires

Les lésions intradurales extramedullaires réalisant un syndrome de compression médullaire lente sont principalement représentées par le neurinome (50 %) et le méningiome (40 %). Chez l’adulte, la majorité des lésions intradurales est extramedullaire (70 %).

Neurinome

Cette lésion tumorale bénigne est développée à partir des cellules de Schwann des racines nerveuses (schwannome est un synonyme de neurinome). Le neurinome concerne autant les hommes que les femmes, à n’importe quel âge. Il peut survenir dans le cadre d’une neurofibromatose de type II ou de type I (maladie de von Recklinghausen) [34, 35].

Sa localisation est préférentiellement cervicale (50 %). Le syndrome radiculaire est souvent plus marqué que lors d’une compression médullaire lente par un méningiome. La radiculopathie peut être le mode exclusif de début des symptômes du fait de la localisation préférentielle sur la racine postérieure. Des douleurs nocturnes de décubitus sont classiquement décrites « douleurs à dormir debout ».

Les radiographies, lorsqu’elles sont pratiquées, peuvent mettre en évidence un élargissement du trou de conjugaison. L’IRM est évocatrice lorsque la lésion est située sur le trajet de la racine spinale ; il peut prendre une forme en « sablier » de part et d’autre du trou de conjugaison. Le neurinome apparaît en hyper-T2, hypo- ou iso-T1 rehausse par le produit de contraste de manière homogène (Fig. 4). Les formes kystiques sont rares mais non exceptionnelles.

Le traitement est chirurgical par exérèse complète ou par énucléation s’il est situé sur une racine pour laquelle la réséc- tion provoquerait un déficit fonctionnel important (un électromyogramme peut être pratiqué en préopératoire en cas de doute sur le retentissement prévisible) [35]. Les neurinomes en « sablier » nécessitent parfois un double abord, postérieur puis latéral.

En cas de neurinomes multiples dans le cadre d’une phaco- matose, l’indication opératoire ne doit porter que sur les lésions symptomatiques.

Méningiome

Les méningiomes rachidiens sont la deuxième cause de compression médullaire lente par un processus intradural extramedullaire. Les méningiomes sont plus fréquents chez la femme au-delà de 50 ans.

Ils sont plus généralement situés en région thoracique ; dans le plan axial, ils sont plus fréquents dans la portion latérale (aux jonctions du ligament dentelé), ou postéro-latérale du canal rachidien.

Cette atteinte latérale préférentielle peut réaliser cliniquement un syndrome de Brown-Séquard. Dans tous les cas, le développement lent de la tumeur bénigne est souvent responsable d’un délai diagnostique important [36].
L’IRM met en évidence une masse (iso-T1, iso-T2) prenant le contraste. Une hétérogénéité peut être le résultat d’une vascularisation importante ou de calcifications. La dilatation des espaces sous-arachnoïdiens sus- et sous-jacents à la lésion fait évoquer le caractère extramedullaire de la lésion refoulant le cordon médullaire. La localisation de l’insertion duraire est analysée pour préparer l’intervention chirurgicale [37].

L’exérèse complète chirurgicale est le traitement des méningiomes symptomatiques. La coagulation de la face interne de la dure-mère permet de limiter les récidives qui restent rares [38].

Métastases leptoméningées

Ces lésions sont le résultat d’une dissémination de cellules tumorales dans les espaces sous-arachnoïdiens à partir d’une lésion primitive dans une autre localisation (méulloblastome, épéndymome cérébral, voire médullaire, pinéaloblastome) [31, 39].

Des lésions comparables mais provenant d’une néoplasie viscérale (poumon, sein, mélancome) peuvent réaliser une méningite carcinomateuse, dont l’un des bourgeois de développement peut provoquer une compression médullaire.

L’imagerie met en évidence des lésions multiples en isosignal T1 prenant le contraste dans les espaces sous-arachnoïdiens (Fig. 5). L’IRM cérébrale peut retrouver d’autres localisations ou la lésion primitive [40].

Autres lésions intradurales

Les autres lésions intradurales extramedullaires dans une situation de compression médullaire lente qu’il convient d’évoquer malgré leur rareté sont :
- lipome (souvent du cône terminal) (Fig. 6) ;
- kyste épidermoïde du cône (souvent chez l’enfant) ;
- épéndymome du cône (souvent chez l’adulte jeune) ;
- lymphome méningé (Fig. 7) ;
- tuberculome ; aspergillome.

Lésions extradurales

Les lésions ostéoflagmentaires rachidiennes dégénératives ou traumatiques ne sont pas traitées dans cet article mais doivent être évoquées ; en premier, le canal cervical étroit réalisant une myélopathie cervicarthrosique.

Métastases vertébrales/épidurales

Les lésions secondaires de néoplasie viscérale, en localisation vertébrale ou épidurale, sont la principale cause de compression médullaire lente extradurale.

Les métastases osseuses, toutes localisations confondues, sont effectivement constatées chez 60 % des patients souffrant d’un
cancer. Cette proportion d’atteinte osseuse est variable en fonction de la lésion primitive : sein 80 %, poumon 20-40 %, côlon-rectum 5 %. D’autres lésions primitives peuvent également être responsables de lésions vertébrales : les hématopathies malignes (myélome, lymphome, leucémie) sont la troisième étiologie en fréquence derrière le sein et le poumon ; rein, cancer digestif ou ORL, thyroïde, vessie, mélanome sont plus rares.

Un antécédent de lésion primitive doit donc faire évoquer ce diagnostic étiologique. L’évolution clinique est souvent rapide. Cliniquement, il existe une altération de l’état général, des douleurs osseuses multiples ; le syndrome radiculaire est souvent au premier plan dans l’histoire des symptômes. Une fièvre est souvent présente lors des hématopathies malignes.

L’examen clinique et les explorations cliniques (scanner thoraco-abdomino-pelvien, fibroscopie, biologie sanguine puis myélogramme) permettent souvent de faire le diagnostic étiologique.

La compression médullaire peut être le résultat d’une extension d’une métastase vertébrale vers le canal rachidien. La compression peut aussi être le résultat du développement de la lésion secondaire dans le seul espace épidural. L’origine est alors hématogène dans les pleux veineux épiduraux (l’existence d’un essaimage par voie lymphatique est controversée).

L’imagerie radiologique standard ou scanner met en évidence une ostéolyse, plus rarement une ostécondensation (prostate, lymphome de Hodgkin, parfois sein) (Fig. 8).

L’IRM confirme le diagnostic, analyse l’étendue, le nombre de lésions, le retentissement sur le calibre du canal rachidien, sur le cordon médullaire. Le tissu tumoral est le plus souvent en hyposignal T1 (alors que l’os spongieux d’une vertèbre est normalement en hypersignal T1 lorsque la graisse n’a pas été remplacée par la tumeur), en hypersignal T2. Le matériel tumoral prend le contraste (souvent modérément) à l’injection (Fig. 9).

Quelles que soient l’étiologie et l’étendue de la prolifération, la barrière durel est toujours respectée.

Le pronostic fonctionnel et vital des compressions médullaires est généralement mauvais. Les différentes actions thérapeutiques sont souvent dictées par un objectif palliatif. La chirurgie de décompression en urgence n’est envisageable qu’en cas d’évolution rapide et récente d’un déficit invalidant mais incomplet. Même dans cette situation où la probabilité de gain fonctionnel est maximale, l’indication opératoire doit être modulée d’une part en fonction de l’état général du patient, de ses capacités présumées de cicatrisation, de son risque infectieux en cas d’aplasie tumoraire ou médicamenteuse, d’autre part en fonction de son pronostic vital global.

L’option la plus souvent retenue reste donc celle de la radiothérapie, éventuellement réalisée en urgence en cas d’évolivité importante des troubles neurologiques. Celle-ci permet d’avoir une action à la fois à visée neurologique et antalgique.

La corticothérapie à forte dose (1 à 2 mg/kg d’équivalent prednisone) permet souvent, comme pour la plupart des lésions ayant des phénomènes inflammatoires intrinsèques, de libérer au moins partiellement la compression de la moelle, le temps d’obtenir une efficacité des autres traitements plus spécifiques (radiothérapie, chimiothérapie).

Tumeurs vertébrales primitives

Lorsque l’évolution clinique est lente, il faut évoquer une lésion bénigne : ostéoblastome, ostéome ostéoidé, chondrome, chondroblastome, kyste anévrismal, dysplasie fibreuse, granulome éosinophile, hémangiome.

L’ostéome ostéoidé est classiquement responsable de douleurs nocturnes cédant sous aspirine ; le scanner permet de faire le diagnostic, visualisant le « nodus » entouré de corticale épaisse [42].

Les kystes anévrismaux, de description histologique controversée, sont parfois associés à d’autres lésions bénignes (parfois malignes) adjacentes en particulier au-delà de 20 ans. L’existence d’un ou plusieurs niveaux liquides (niveaux hématématiques) sur l’imagerie est très évocatrice d’un kyste anévrismal.

L’aspect en « verre dépoli » au scanner est en faveur d’une dysplasie fibreuse.

Les ostéomes et ostéoblastomes sont plus généralement situés dans les pédicules et les lames vertébrales. L’ostéoblastome et le kyste anévrismal (qui sont souvent difficiles à différencier) ont un potentiel de croissance non négligeable.

La chirurgie est le traitement le plus adapté pour ces lésions de localisation osseuse lorsqu’elles sont responsables d’une compression neurologique. Il est parfois nécessaire de compléter le geste par une ostéosynthèse en cas d’instabilité rachidienne secondaire.

Empyème épidural

L’empyème épidural, collection purulente dans l’espace pérédural, est une cause non exceptionnelle de compression médullaire. La fixation bactérienne peut être le résultat d’une dispersion hématogène (bactériémie, toxi-comanie intravasculaire), d’une inoculation iatrogène (catéthérismes périduraux, chirurgie rachidienne), ou par contiguïté à partir d’une spondylodiscite avoisinante (Fig. 10).

Les germes constatés sont par ordre de fréquence : le staphylocoque doré, les bacilles à Gram négatif, les cocci à Gram positif, les bactéries anaérobies [43].

Cliniquement, le syndrome rachidien est très marqué. La fièvre fréquente n’est pas systématiquement présente. Les
symptômes neurologiques peuvent passer au second plan, voire être méconnus en cas de choc septique.

Les radiographies standard sont souvent normales ; elles peuvent parfois révéler un pincement discal dans une spondylodiscite.

L’IRM évoque le diagnostic d’empyème en mettant en évidence la collection épidualre (Fig. 11) et son éventuelle connexion à une suppuration adjacente. Les séquences pondérées en diffusion permettent souvent de confirmer le caractère purulent de la collection épidualre (hypersignal B 1 000).

Si dans le mal de Pott (tuberculose vertébrale) avec extension intracanaire le traitement médical seul peut se discerner (après une ponction scanguidée à visée diagnostique bactériologique), toutes les autres étiologies d’empyème provoquant un déficit neurologique doivent conduire à une décompression chirurgicale pendant laquelle un prélèvement permet secondairement d’adapter le traitement antibiotique. L’antibiothérapie débutée en péripéritoire après les prélèvements doit couvrir les germes les plus probables en fonction du contexte. Elle est poursuivie en administration parentérale pendant 3 à 4 semaines [43, 44].

Diagnostics différentiels

Les diagnostics différentiels à évoquer lors d’un syndrome de compression médullaire sont multiples : sclérose en plaques, sclérose latérale amyotrophique, sclérose combinée de la moelle, syndrome de conversion hystérique, polyradiculonévrite (syndrome de Guillain-Barré), myélite infectieuse, inflammatoire ou postradiique, atteinte bilatérale cérébrale des lobules paracentraux.

Références

E. Mireau, Neurochirurgien (e.mireau@hospital-foch.org).
Services de neurochirurgie, Hôpital Foch, 40, rue Worth, 92151 Suresnes, France.
G. Dib Antunes Filho, Neurochirurgien.
Clinica Neurocor, rua Coronel Cordova, 915 – Centro, 88502-001 – Lages/Santa Catarina, Brésil.
S. Gaudart, Chef de clinique-assistant.
Services de radiologie, Hôpital Beaujon, 100, boulevard du Général-Leclerc, 92118 Clichy cedex, France.